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1 Ladapakolasi algoritmusok

A L&adapakolds (angolul bin packing, roviden: BP) a Kombinatorikus Optimalizalds teriiletéhez
tartozik. A feladat a kovetkezd: Adott n szdamu targy, ezek méretei a pi,ps,...,p, pozitiv, 0 és
1 kozotti raciondlis szamok. Azt keressiik, hogy ezen tdrgyakat hogyan lehet a lehet6 legkevesebb
lddaba pakolni gy, hogy barmely lddaba legfeljebb 1 ¢sszméretii targy pakolhats. Az egy laddba
pakolt térgyak osszmeéretét szintnek (level) nevezziik. Kozismert hogy a feladat N P-nehéz ([7, 27]).
M4ds kombinatorikus optimalizdldsi feladatokhoz hasonléan, a BP-nek is két {6 teriiletét kiilon-
boztethetjiik meg, nevezetesen az offline és online eseteket. Offline esetben valamely algoritmus
alkalmazdsa el6tt mar minden sziikséges informacié rendelkezésiinkre all az inputrdl, mig az online
esetben a tdargyak egyenként érkeznek, és minden tdrgy pakoldsat tgy a késébb érkezd targyak
ismerete nélkiil kell elvégezniink. Mi most csak az offline esettel foglalkozunk.

A lddapakolds a korai hetvenes években "sziiletett", nagyjelentéségii e szempontbdél D.S. John-
son [32] doktori disszertéciéja (valamint egyéb korai munkdk). Johnson dolgozata alapvetd ered-
ményeket kozol bizonyos "Fit tipusi" algoritmusokkal kapcsolatban (mint példaul a First Fit (FF),
Best Fit (BF'), és més algoritmusok). A F'F algoritmus a kovetkezd: A térgyakat egy adott L lista
szerinti sorrendben pakolja el. A soron kovetkez6 targy mindig a legelsd laddba keriil, ahova befér.
Ha semelyik ldddba nem fér be, akkor egy uj ldadat "nyit", és oda pakolja a tdrgyat. (A ldddk a
nyitdsuk szerinti sorrend szerint vannak rendezve.) Amennyiben az L listdban a tdrgyak a méreteik
szerinti csokkend sorrendben érkeznek, az F'F' algoritmust First Fit Decreasing (F'F' D) algoritmus-
nak hivjuk. A Best Fit (BF') algoritmus esetén szintén adott sorrend szerint pakoljuk a tdrgyakat, a
kovetkezd targy abba a lddédba keriil (ahova befér, és) ahol a ldda szintje a lehetd legnagyobb lesz a
targy pakoldsa utdn. Ha nincs ilyen ldda, dj ldddba keriil a targy. Sok egyéb algoritmus is van (lasd
pl. [7]), de most csak az ismertetett F'F' és BF algoritmussal, illetve F'F' bizonyos véltozataival
foglalkozunk. A BP feladat paraméteres véltozatéban a targyak méretére az erésebb 0 < p; < 1/d
feltétel teljesiil minden ¢ € {1,...,n} index esetén, valamely adott d > 1 egész szdamra. Tovébba, a
" Cardinality Constrained Bin Packing (CCBP), magyarul elemszamkorldtos ladapakoldsi feladat
esetén adott egy k paraméter (amely pozitiv egész szam), és azon feliil hogy minden ldda szintje
legfeljebb 1, annak is teljesiilnie kell hogy barmely ldda legfeljebb k darab targyat tartalmaz.

Az algoritmusok hatékonysdgdat dltaldban az approximdcids ardnnyal mérjiikk. Ennek két val-
tozata van, az aszimptotikus és az abszolit approximéacids ardnyok. Ezeket a kovetkezdképpen
definidljuk. Legyen L a pakolandé targyak halmaza (rendezett esetben listdja). Jeloljon OPT egy
optimélis algoritmust, A pedig egy tetszbleges algoritmust. (Nyilvdnvald, hogy mivel véges sok
targy van, ezek véges sokféleképpen pakolhatéak, emiatt optimédlis pakolds, és ezéltal optimadlis al-
goritmus mindenképpen van, legfeljebb nehezen tudjuk azt meghatarozni.) Jelolje OPT(L) illetve
A(L) az algoritmusok &ltal felhasznalt ladak szdmét, miutdn az L lista targyait elpakoltdk. Ekkor

Raps(A) = sup {A(L)/OPT(L)},

az A algoritmus abszolit approximécids ardnya, mig

Rus(A) = lim sup {A(L)/OPT(L) | OPT(L) > n}
n—oo L

az aszimptotikus approximéciés ardny. Kordan kideriilt, hogy az aszimptotikus ardny sok esetben
viszonylag konnyen meghatarozhaté. Mar Ullman [41] korai munkdja tartalmazza az R.s(FF) < 1.7



fels6 becslést, az élesség bizonyitdsa (vagyis Res(FF) > 1.7) pedig a Garey és tdrsai [29] valamint
Johnson és tédrsai [34] altal frott cikkekben taldlhat6. Ezen eredmények az els6k kozott voltak,
amelyeket approximéciés algoritmusokkal kapcsolatban (nemcsak a BP hanem egyaltaldn az opti-
malizélds teriiletén) kozoltek. Az F'F' algoritmus abszolit approximdcids ardnya pontos értékének
meghatdrozdsa viszont lényegesen nehezebb, és azéta nyitott kérdés volt. Az ezzel kapcsolatos elsé
eredmeény Simchi-Levy [40] 1994-es dolgozata tartalmazza, miszerint Rups(FF) < 1.75 (ugyanez a
fels6 becslés BF-re is all). Désa és Sgall 2013-as és 2014-es [16, 17] cikkeiben kapjuk meg a vdlaszt
az abszolit approximdciés arnydnak pontos értékére vonatkozé kérdésre, miszerint Ryps(FF) =
Rups(BF) = 1.7.

Az FFD algoritmussal kapcsolatban Johnson 1973-as doktori dolgozatdban [32] beldtta, hogy
FFD(L) <11/9-OPT(L) + 4 teljesiil tetszoleges L lista esetén. Szintén beldtta hogy az aszimp-
totikus szorzo, vagyis 11/9 értéke "éles", nem csokkenthets. Az additiv tag (vagyis az elébbi 4-es)
csokkentésére azéta tobb prébalkozds tortént, a lehetd legkisebb értékének meghatdrozasa Désa
[13] cikkében illetve Désa és térsai [14] cikkében szerepel: FFD(L) < 11/9- OPT(L) + 6/9. Ez
tisztdzza az abszolit approximécids ardny kérdését is, mint késdbb ezt ismertetjiik. Az F'F algo-
ritmus paraméteres valtozata esetén (ahol p; < 1/d) az aszimptotikus ardny éles értéke szerepel
mar Johnson [32] dolgozatdban, eszerint R,s(FF;) = d%;l, ha d > 1. Az abszolit approximd-
ci6s ardnyét viszont csak a kozelmiiltban sikeriilt meghatdrozni, tetszéleges d esetére, Désa [18]
cikkében. Ezutdan foglalkozunk az F'I' algoritmusnak az elemszamkorldatos valtozatdval. Az elsd
eredményeket tartalmazo cikk ([36]) 1975-ben jelent meg. Az algoritmus aszimptotikus ardnya pon-
tos értékének meghatdrozasa (a k = 2 eset kivételével) azéta nyitott volt. Ezt a kérdést vélaszolja
meg Désa és Epstein tetszoleges k > 3 esetén a [19, 20] cikkekben. A dolgozat végén két olyan
modellel foglalkozunk (kotegelt ladapakoldsi feladat, és graf-lada pakoldsi feladat), ahol F'F' D segé-
dalgoritmusként szerepel. Az optimalizdlds teriiletén ez egy bevett dolog, hogy valamely tdjonnan
felmeriilt feladat esetén megprobaljuk a "régi, bevalt" algoritmusokat alkalmazni.

A BP teriilete rendkiviil szines és szertedgazé, a fentiekben csak a dolgozat eredményeihez
szorosan kapcsolddoé vonatkozasokat ismertettiik, tovdbbiak taldlhatok példaul a kovetkezd munkak-
ban: [7, 8, 9, 10, 11, 12, 21, 42).

Végiil néhdny sz6 a bizonyitdsokrdl. A felsd korldtok bizonyitdsdhoz majdnem minden eset-
ben tgynevezett silyfiiggvényeket haszndlunk. Ez egy régi bevalt médszer, mar az F'F algoritmus
aszimptotikus ardnyanak bizonyitdsa is silyfiiggvény segitségével torténhet, lasd [33, 7]. Megjegyez-
ziik azonban, hogy az alkalmazott sulyfiiggvényekben mindig van valami ijdonsdg a kordbbiakhoz
képest, helyenként egészen "ravasz" mdédon kell 6ket definidlni és alkalmazni, ezdltal vagyunk képe-
sek az éles eredmények elérésére. A Tézisfiizetben igyeksziink bemutatni ezeknek a sulyfiiggvények
a haszndlatdt is. Az alsé korlatok bizonyitdsahoz pedig 1ij konstrukcidkat kellett alkalmazni, vagyis
olyan "kellemetlen" listdt taldlni, amelyet a vizsgdlt algoritmus nem képes "jol" pakolni, néhdny
ilyen 1j konstrukciét is bemutatunk.

A tézisfiizet szerkezete: Ebben a fejezetben egy rovid altalanos ismertetét adtunk a ladapakoldsi
feladatokkal, és megold6 algoritmusokkal kapcsolatban. A kovetkez6 (2.-6.) fejezetek mindegyike
egy-egy tézispontnak felel meg. Ezutdn a 7. fejezetben 6sszefoglaljuk a tézisekben szerepld ered-
ményeket. Legvégiil taldlhaté a hivatkozdsok listdja. A tézis a szerzének a kovetkezd 12 publiké-
cigjén alapul:

[4, 5, 13, 14, 15, 16, 17, 18, 19, 20, 21, 43].



2 Az FFD algoritmus éles becslése

Az FFD algoritmus az F'F' algoritmus rendezett viltozata: rendezziik a tdrgyakat méreteik szerinti
monoton cstkkend sorrendbe, és utdnna alkalmazzuk az FF algoritmust (vagyis a soron kovetkezd
targy az els6 ldddba keriil ahova befér). Valamely L input esetén jelentse F'FD(L) illetve OPT (L)
az F'FD illetve egy optimélis algoritmus &dltal kapott ladaszamot. Azt keressiik, hogy az aldbbi
egyenlttlenségben:

FFD(L)<11/9-OPT(L)+C

melyik az a legkisebb konstans, amelyik a C helyére frhaté, igy hogy az egyenl6tlenség tetszoleges
L input esetén igaz legyen. A 11/9 aszimptotikus egyiitthat6 a lehet6 legkisebb, ezt mér Johnson
PhD munkéja tartamazza. Azonban az additiv konstans legkisebb értékére vonatkozé kérdés azdta
nyitott volt. Johnson dolgozatéban C értéke 4. Bé tiz évvel késébb Baker [3] kozolt egy némileg
rovidebb bizonyitast, ahol C' < 3. Késébb 1991-ben Yue [45] beldtta hogy C < 1; valamint 2000-
ben Li és Yue [38] kozolt egy vazlatot arrél hogy az additiv konstans legfeljebb 7/9, sejtésiik szerint
a pontos érték 5/9. Azonban Désa [13] megmutatta hogy a C konstans nem lehet kisebb mint
6/9, és ez tetszblegesen nagy inputra is igaz. Tovabbd allitja hogy ez a 6/9 a lehetd legkisebb
konstans. A [13] dolgozat egy konferenciakiadvany. Itt a bizonyitds két f6 részre van osztva. Az
egyik esetre vonatkozoé bizonyitas szerepel a cikkben, valamint a mé&sik esetre ad egy védzlatot. A
teljes bizonyitds Désa és tdrsai [14] cikkében szerepel. Valdjaban ez egy teljesen dj bizonyitds: az
els6 esetben egy tigyes triikkk segitségével a targyak nem 6 osztdlyba lettek sorolva mint a [13] cikk
esetén hanem 5 osztdlyba. Ezdltal ennek az esetnek a bizonyitdsa mds: némileg egyszeriibb és
rovidebb is. Szintén 1ij osztdlyozds van megadva a mésik nagy esetre is, és szerepel itt az erre az
esetre vonatkozé bizonyités.

A [14] cikk valéjdban sokkal tobbet bizonyit, mint a fenti tétel, hiszen tetsz6leges m egész esetén
megadja azt a lehetd legnagyobb k szdmot, amelyekre van olyan L input, hogy OPT (L) = m és
FFD(L) = k. A kérdés trividlis ha OPT(L) = 1, ekkor FFD(L) = 1. Ha OPT(L) = 2, akkor
a legrosszabb esetben FFD(L) = 3. Kicsivel nagyobb optimumeérték esetén azonban a kérdés
kordntsem egyszerii. Mar m = 5 esetén annak a kérdésnek az eldontése hogy van-e olyan L input
amelyre OPT(L) = 5 és FFD(L) = 7, a 2007-es [43] cikk megjelenéséig nyitott volt (egyébként
nincs ilyen). Az aldbbi tételben megadjuk a véalaszt a fenti kérdésre.

1. Tétel. Legyen L tetszoleges input, valamint legyen OPT(L) = 9n + i, ahol n egész és
2 <14 <10. Ekkor

lIn+i+1, 2<4<5;
FED(L) < { 1In+i+2, 6<17¢<10;
vagy ekvivalens mddon:
FFD(L) <|11/9-OPT(L)+6/9]. (1)

és a korlat minden n és 1 értékre éles.

Hangsilyozzuk hogy az eldbbi tdbldzatnak kordbban csak egy-két értéke volt ismert, egészen a
[13] illetve [14] cikkek megjelenéséig. (A maradékosztédlyok azért szerepelnek egy kissé szokatlan
moédon, mert igy a tdbldzat egy kicsivel egyszeriibb.) Csak n = 0 és i = 1 maradt ki a tdbldzatbdl,
ekkor OPT(L) = FFD(L) = 1.

A felsd korlat bizonyitasa. Ha a legkisebb (X-szel jelolt) targy mérete legfeljebb 2/11, vagy
ha legaldbb 1/4, akkor elemi médon elvégezhetd a bizonyitds. A maradék eseteket két fo esetre



osztjuk, annak megfeleléen, hogy a legkisebb tdrgy mérete 1/5-nél nagyobb, vagy legfeljebb ekkora.

Az egyik nagy eset: 1/5 < X < 1/4. A targyakat osztalyokba soroljuk. Legyen Z a legkisebb
reguldris targy az (%, %] intervallumbdl (vagyis olyan targy, amelyik nem "fallback" targy, vagyis
maés széval, amelyik az éppen utolsé nyitott ladaba keriil) ha van ilyen térgy, egyébként legyen
Z = 1/3. (A Z-re vonatkoz6 definici6 itt jelent6s dolog, ezéltal sikeriil az osztélyok szdmét 6
helyett 5-re lecsokkenteni. Ezdltal a lehetséges ladatipusok szédma sokkal kisebb mintha 6 osztédly
lenne, ezaltal a bizonyitds rovidebb és némileg egyszeriibb is). Az osztdlyok az X és a Z értéke
alapjan definidlédnak. Az osztalyok neve giant, big, medium, small, és tiny, és a kezddbetiikkel
roviditjiitk 6ket. Minden osztdly kap egy-egy stlyt is, ezek a stlyok most konstansok, az aldbbiak

szerint.

Név Osztély Sily
Giant ;<G 23
: —X I

Medium | 552 < M <X [ 15
Small z<S<L2 12
Tiny X<T<Z 9

A térgyak osztdlyozdsa 1/5 < X < 1/4 esetén

Jelolje egy A targy sulydt w(A), az 6sszes targy osszsulydt w(L), valamely optimalis vagy F'FD
lada silyét pedig w(B*) illetve w(B). Definidljuk a kovetkez6 fogalmakat:

e reserve (vagyis tartalék), egy optimadlis lada esetén ennek értéke res(B*) = 44 — w(B*).
Amikor az osztélyok silyat definidgljuk, ezt gy tessziik, hogy semelyik optimalis lada sulya
ne legyen tobb mint 44, vagyis a tartalék minden optimadlis ldda esetén nemnegativ.

e surplus (tobblet), FFD ldddk esetén definidljuk. Egy FFD lada tobblete a kovetkezd:
sur(B) = w(B) — 36, ha ez az érték nemnegativ.

e shortage (vagyis hidny), F/F'D 14dék esetén definidljuk, short(B) = 36 —w(B), ha ez pozitiv.

Ha minden F'F'D lada silya legaldbb 36 (vagyis nincs hidny) tudvan azt is hogy minden optimalis
ldda silya legfeljebb 44, vagyis a tartalék nemnegativ, a kivetkezd egyenldtlenség adddik:

FFD(L) OPT(L) 14
FFD(L) < By) =w(L) = B < —. PT(L
36 <>_;w<k> w(L) kzlwu)_% 36 OPT(L),

és a bizonyitds kész is van. Sajnos az esetek tobbségében bizonyos FF D ldddk silya a kellénél
kisebb, ezeken a helyeken hidny keletkezik. De szerencsére, ha vannak is ilyen lddédk, olyanok is
lesznek, ahol meg tobblet van. Az optimalis laddk tartalékjait is felhaszndlva, egyszer(i levezetés
utan kapjuk, hogy az eredeti (1) allitdsunk azzal ekvivalens, hogy az Osszes hidny lefedheté az
Osszes tartalékkal, valamint az 6sszes tobblettel, valamint még a 27 additiv konstanssal. Ez utébbit
rex(L)-lel jelolve tehdt ezt az egyenlétlenséget kell bizonyitanunk:

res(L) 4+ sur(L) + rex(L) > short(L) (2)



Ezek utdn megvizsgdljuk, hogy milyen tipusi laddk lehetségesek, ezek a kovetkezok:

OPT

2|[G]1]1
18 || B 1[1]1]1

15 || M 2[1[1]1[1

12][s 1 2[1 1 3[2 11

9 |[T]1]2]1 1[2][1 1[3]2 2] 1 4] 3
r 3/2]2]5]8 5 8]2]11|[8]2[11|5]14[8]17

FFD

Bl[G[1[1][1]1 1]1

18| B |1 2[ 1 ]1 1[1]1

15 || M 1 2[1[1[1] 1
128 1 1|1 2|1 1

9 |[T 1 1[2]1 121 1[3] 2
s [5]2][-1]-4]0]|-3]-6 5 6 0][3][3]0]6]-3
12][S[3]2 1] 1 [ ]

9 ||IT 2|1 [3] 2 [4][1]
s|[0]6]-3[3][-6[0]0]

Ezek utdn esetszétvdlasztds kovetkezik, és egyesével beldtjuk, hogy nincs olyan input amikor
(2) nem teljesiil.

A ma3asik nagy eset: 2/11 < X < 1/5. Ebben az esetben 8 osztdlyra van sziikség, csak
az OPT ladék felsoroldsdhoz kell egy teljes oldal, és szintén az F'FD laddkéhoz is. Legyen Z a
legkisebb reguléris targy az (%, i] intervallumban, ha van ilyen targy, egyébként legyen Z = 1/4.
Az osztalyok és silyok a kovetkezok:

Név Suly

5 < G 23
= <B |[<[f [
LZolc [<[5X]16
i< M [<[EZ 1
A <N [ <3 12
2|8 <5510
z< |U [ <52 ]9

X < \4 <|Z 8

A targyak osztélyozdsa 2/11 < X < 1/5 esetén

Konnyen igazolhat6, hogy az osztdlyok jol definidltak. A tartalék (reserve), tobblet (surplus)
és hidny (shortage) az elébbi esethez hasonlé médon defninidlhat6. Aldbb felsoroljuk az 6sszes
lehetséges lddatipust. Ezutdn a bizonyitds az eléz6 esethez hasonld, kivéve hogy sokkal részletesebb
vizsgdlatra van sziikség.
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3 A First Fit algoritmus éles becslése

A kovetkezb eredmény a First Fit algoritmussal kapcsolatos. Emlékeztet6iil: a tdrgyak valamely
(nem feltétleniil csokkend) sorrendbe vannak rendezve. Ezutdn a tdrgyakat ebben a sorrendben
pakoljuk, a soron kovetkezd térgy az elsd olyan ldddba keriil ahova befér, ha sehova sem fér be,
akkor pedig egy 1j ldddba tessziik.

Az FF algoritmus aszimptotikus approximdcids ardnya 1.7, ez a korai eredmény mar Ullman
1971-es [41] dolgozatdban szerepel, és szintén targyalja ezt az eredményt [29, 34]. Az abszolit
approximdciés ardnnyal kapcsolatban a legkordabbi becslés Ullman elébb idézett munkdjabdl szar-
mazik, miszerint F'F' < 1.7- OPT + 3 (az egyszeriiség kedvéért elhagytuk az L input jelolésést,
az egyenlOtlenséget gy értjiik, hogy az tetszdleges L input esetén teljesiil, ahol F'F illetve OPT
jelenti az F'F illetve egy optimalis algoritmus dltal hasznélt 14ddk szamat). Nem sokkal késébb
az additiv tag 2-re csokkent ([29]), majd a [28] cikk beldtta hogy F'F' < [1.7- OPT; mivel OPT
illetve F'F' egész, ez ekvivalens a kovetkezovel: F'F < 1.7-OPT + 0.9. B6 harminc évvel késébb az
additiv tag tovabb csokkent a becslésben: FF' < 1.7- OPT + 0.7 ([44]).

Ha elhagyjuk az additiv tagot, a kovetkez6 becslések szerepelnek az irodalomban: Simchi-Levy
[40] 1994-es cikkében bizonyitotta hogy FF' < 1.75-OPT. Eztan Xia és Tan [44] illetve Boyar, Dosa
és Epstein [4] tovdbb csokkentette a szorzét 12/7 ~ 1.7143-ra, majd Németh 101/59 ~ 1.7119-re
[39].

Az alsé korlédtot illetéen, kordn kideriilt hogy van olyan input tetszélegesen nagy OPT esetén,
amikor F'F' = 1.7- OPT és OPT = 10k + 1, valamint ismert volt egy példa amelyre F'F = 17 és
OPT = 10, [29, 34]. (Ezen kiviil a cikkek egyike megjegyzi, hogy van olyan példa amikor F'F' = 34
és OPT = 20, de ez mar tugy tiinik sehol sem lett publikédlva.)

A kérdés felvetése utan 40 évvel, Désa és Sgall [16, 17] cikkei mutattdk meg hogy az F'F algo-
ritmus abszoliut approximéciés ardnya pontosan 1.7. Mds széval, ha az optimaélis pakoldshoz O PT
szadmu ladédra van sziikség, akkor F'F' legfeljebb [1.7 - OPT | lddat haszndl fel. Ennél tobb is igaz,
az €el6z6 fejezethez hasonlé mdédon, most is sikeriil tetszbleges OPT értékre megadni, hogy legfel-
jebb hény lddédt haszndl F'F', hiszen megadunk olyan inputokat, amelyekre az F'F' altal felhaszndlt
laddk szdma pontosan [1.7-OPT|. Kordbban csak néhény kisebb OPT értékre volt ismert F'F-nek
pontos felsé becslése. Eredményiinket a kovetkezd tételben mondjuk ki pontosan:

2. Tétel. Legyen L tetszbleges input, ekkor
FF(L) < |1.7-OPT|,

és tetszoleges OPT értékre van olyan L input, amikor a fenti eqyenlotlenségben eqyenloség szerepel,
vagyis a becslés minden OPT esetén éles.



3.1 Uj eszkdzdk a fels6 korlat bizonyitdsahoz

A 16 eszkdz, az F'F aszimptotikus ardnydnak bizonyitdsdra hasznalt klasszikus sulyfiiggvény ([7])
Ujszerii targyaldsa. A silyfiiggvény aldbb balra szerepel (ahol a tdrgy mérete a, a silya pedig w(a)):

ga haagé, 0 haagé,

6 3 1 11 3 1 11
w(a)= 43¢ 50@—5) haae(e3), sy = 130075 haac(ss),

2a+0.1 haa € [3,3] . 0.1 haa € [3,3] ,

ga+0.4 haa > 3. 0.4 haa>%.

Lathatjuk, hogy a sulyfiiggvény értéke mindenhol legaldbb ga. Ezt e részt (amit skéldzott
meéretnek neveziink) levdlasztva a maradék neve legyen bénusz (jeloljiik v(a)-val). A bénusz a
sulyfiiggvénytél jobbra szerepel. Aldbb ezek grafikonjai lathatok 0 < a < 1/2 esetén.

| [

70002 04 00 02 0.4
a a

Térgyak tetszOleges B halmazdra legyen v(B) = > . pv(a) a bénusz ésszege, valamint s(B) =
Y acp S(a) az dsszméret. Hogy mire j6 az el6bbi felbontds? Kideriil, hogy tetszoleges s(B) < 1 es-
etén (tehat olyan targyakra amelyek beférnek egy ladaba) w(B) < 1.7 nagyon kénnyen bizonyithato.
De ami még ennél is szerencsésebb: kénnyen beldthatd, hogy az F'F laddédk osszsilya atlagosan
legalabb 1 (kivéve kevés szamu 14dét). E két (alsé és felsd) becslésbol aztan a kivant allitas adodik.
Az el6bbi dllitds az dtlagos Osszsilyra pontosan a kovetkezd dllitdsban van megfogalmazva:

3. Allitas: Legyen B,C két olyan lida az FF alkalmazdsa utan, ahol s(B) > 2/3, C legaldbb
két targyat tartalmaz, valamint B elobb lett megnyitva az algoritmus dltal mint C. Ekkor gs(B) +
v(C) > 1.

Vagyis a suly ezért lett szétbontva: Az egyik részét vessziik az egyik ldddban (a skdldzott
méretet) és a masik részét a kovetkezo laddban (a bonuszt), és ezek dsszege legaldbb 1. Az 6sszegzés-
bél kimaradt az utolsé ldddnak a skaldzott mérete, emiatt az el6z6ekbdl "csak" FF < 1.7-OPT+0.3
kovetkezik. Az éles becslés eléréséhez tovabbi eszkozokre van sziikség: A laddkat hdrom osztédlyra
bontjuk a ldddk szintje és a ldddba pakolt tdrgyak darabszdma szerint, ezutdn kissé részletesebb
vizsgalattal mar F'F < 1.7- OPT + 0.1 addédik. Végiil, az utolsé egytized eltiintetéséhez egyéb
eszkozoket is be kell vetni: oszthatésigi feltételeket is figyelembe vesziink az O PT' értékét illetden.

3.2 Uj als6 korlit konstrukcié

A fels6 korlatunk szerint mar tudjuk hogy F'F < |1.7-OPT | teljesiil. A korai [41, 29, 34] munkdkban
olyan alsé korlat konstrukcio szerepel, amelyre F'F' = 1.7-OPT és OPT = 10k+1, ahol k tetszdleges
lehet. Az éles alsé6 korldtot (ami [1.7- OPT|) Désa és Sgall [16, 17] cikkei tartalmazzék.

1. a régi konstrukcié kicsi médositdsa. A kordbbi [16] cikkben a kovetkezét vettiik
észre. Az eredeti (vagyis a [29, 34| cikkekben szerepldi) als6 korlat konstrukciot elég csak egy kicsit
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megvéltoztatni, és az optimum értékét O PT = 10k + ¢ alakba frva, a 10 maradékosztalybdl nyolc
esetben éles als6 korldtot kapunk. A kovetkezordl van szé. Az eredeti konstrukciéban olyan L input
(lista) szerepel, ahol a targyak hdrom osztalybol (régiobol) keriilnek ki, ezek az A térgyak, a B
targyak és a C targyak. Az elsd régiobeli téargyak (az A targyak) mérete nagyjéabdl 1/6 (lehetnek
ennél kicsivel kisebbek vagy nagyobbak is), a B targyak nagyjabol 1/3 méretiiek (kicsivel kisebbek
vagy nagyobbak), és a C' tdrgyak mérete pontosan 1/2 4 §, ahol § > 0. Ezek a tdrgyak ebben a
sorrendben érkeznek. Ezt a listdt csak egy kicsit médositjuk, adunk néhdany targyat a listdhoz az
elsé régidbeli targyak elott, vagy az elsd és mésodik kozott, vagy a mésodik és harmadik kozott,
vagy a lista végén. A kibovitett lista legyen L'. A hozzdadott targyak olyanok, hogy ezek mind
4j laddkba keriilnek, pontosabban az L listabeli targyak csak L listabeli targyakkal keriilnek egy
lddaba tovabbra is. Mds néven, az eredeti lista egy "fekete doboz"-ként funkcional. A mddositds
utdn kapunk egy megfelelé L' listdt, ami az aldbbi tételt bizonyitja:

4. Tétel. a, Tetszoleges k> 1 és 0 <1 <9 esetén, van olyan I input amelyre OPT = 10k + i
és F'F értékére az alabbi tablazat felsé sordban levd becslés teljesil. (Az alsé sor az dsszehasonlitds
kedvéért a felsé korlatot tartalmazza.)

i=]0 [1]2[3[4]5]6 [7 [8 |9
FF>17k+ | —1|1|3|4]6|8]10]| 111315
FF< [17Tk+ 1.7 = 17k+ |0 |[1|3[5|6 8|10 |11 |13 15

b, Tovabbd, i = 1,...,9 esetére van olyan input amelyre OPT =14 és FF = |1.7-1].
Ezéltal a tiz maradékosztély koziil 8 esetben éles korldttal rendelkeziink. Ezek a kivételek: ¢ = 0

and ¢ = 3. Ezekre az esetekre viszont a konstrukcié (a régi konstrukcié médositdsa) nem miikodik.
Emiatt egy egészen 1j konstrukciéval dllott el6 a [17] cikk.

2. Uj konstrukcié. Az tj konstrukeié egyszeriibb az eredetinél, és az éles becslést sikeriil vele
meghatdrozni minden maradékosztdly esetén. Ismertetjiik a konstrukcié 1ényegét, az egyszeriiség
kedvéért csak OPT = 10k esetére. Legyen € > 0 egy kicsi racionélis szém. Mint a régi konstrukcié
esetén, most is hdrom régiébdl valasztjuk a targyakat, az A targyak (OPT darab) mérete nagyjabol
1/6, az OPT darab B térgy mérete nagyjabol 1/3, végiil jon még OPT darab C' = 1/2 + £ méretii
targy. Az optimadlis pakolds esetén minden lada tele van, és egyet-egyet tartalmaz mindharom
tipusu targybol.

Az FF pakolds a kovetkezd: Keletkezik 2k ldda az A targyakbdl. Ezek kozott a laddk kozott
az els6 ldddban 6 targy van, az utolséban csak 4, a tobbiben 5 darab targy. Ezutédn a B tdrgyak
pérosédval 1j ldddkba keriilnek. Végiil a C targyak mindegyike 1j ldddba keriil, igy lesz F'F' = 17k.
Eddig ez hasonlé a régi konstrukcichoz, a kiilonbség abban van, hogy hogyan tér el az A téargyak
mérete 1/6-t6l (illetve a B tdargyak mérete 1/3-t6l). Csak egy kicsi §; az eltérés mértéke, de a
lényeg az, hogy ez az eltérés exponencidlisan csokkend. Az A targyak mérete igy van megadva:
1/6 — 61, 1/6 4 62, 1/6 — 63, 1/6 + 84, vagyis A; = 1/6 4 (—1)'8;, és az egymds uténi deltdk ardnya
nagy, pl d;/d;41 = 10. A legels6 delta is kicsinek van vilasztva, példdul 6; = 1/100 megfeleld,
akkor a legutols6 (10k-adik) delta még sokkal kisebb, végiil az ¢ pedig még ennél is kisebbnek van
vilasztva. Ez a lelke a konstrukciénak, az elobbiek miatt mindig csak a legnagyobb delta mérete
a meghatdrozo az egy targyba pakolt targyak esetében, és igy az eldbb lefrt pakolds biztosithaté
(vagyis ahogy jonnek a tdrgyak egyenként, tényleg az elébb leirt ladédkba keriilnek (oda beférnek),
de késobbi targy mér nem keriil ezekbe a laddkba).

Kicsit részletezve a pakolds kezdetét: Az L lista elejére a hat legkisebb A tdrgyat tessziik
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(ezeket: 1/6 — 61, 1/6 — 03, ...,1/6 — d11), ezek az elsé FF 1ladéba keriilnek, itt a targyak osszmérete
majdnem 1, ide tobb tdrgy nem Kkeriil. Az elsd régié végére a négy legnagyobb A targyat tessziik
(vagyis ezeket: 1/6 4 2, ...,1/6 + dg).

Az L listdnak az els6 6 targy utan kovetkezd 5 tdargyat gy valogatjuk ossze az A targyakbol,
hogy ide vélasztunk 3 targyat a megmaradt legkisebbek koziil, és kett6t a megmaradt legnagyobbak
koziil. Vagyis ide keriil az 1/6 + 619 méretii targy, de mivel az 1/6 — 1, ..., 1/6 — §11 méretiiek ekkor
mér el lettek pakolva (az els6 laddba), ezek mar nem "veszélyesek" az 1/6 + 019 méretil tdrgyra
nézve, vagyis a masodik ldddban az ilyen méretii targyak lesznek: 1/6 + 019, 1/6 + 012 , valamint
1/6 — d13, 1/6 — 915, 1/6 — 017. Itt az dsszméret 5/6 f6l6tti, és hogy mennyivel van "f6lotte", abban
csak 019 mérete a meghatéroz6. A még nem pakolt legkisebb targy mérete 1/6 — 019, ez nyilvan
nem fog mér beférni a mésodik laddba (mert a 0; eltérések nagysiga gyorsan csokkend), és akkor
mésik targy sem férhet mar ide. A mésodik laddba tehat megérkezett a megigért 5 darab A térgy,
és a kés6bbickben mds targy mar nem keriil ide. Es igy tovabb, a harmadik laddba is megérkezik 5
darab tdrgy és tovabbiak mér nem férnek oda, stb. Mivel igy az els6 régidbeli tdargyak pakoldsakor
kettd "nagy" és hdrom "kicsi" tdrgy megy egy-egy ldddba, a kicsik hamarabb elfogynak, utdnna
mér csak 1/6-ndl nagyobb térgyakat pakolunk. Az utolsé ladaba (az elsd régié pakoldsakor) a 4
legnagyobb A targy keriilt (ezek kozott 1/6+4 02 és 1/6+d4), ide mar nem fog késébbi targy beférni,
mert ezek legkisebbike 1/3 — d2 — & méretii. Ez nem fér be, mert ¢ < §10x << d4. Ezutén a kozepes
méretii targyak kettesével lesznek pakolva, végiil a legnagyobb targyak is mind sajat (1ij) laddba
mennek. A kovetkezd tétel adodik a konstrukcié altal:

5. Tétel. Tetszbleges OPT érték esetén van olyan input, amelyre FF = |1.7- OPT|.

Ezaltal egy koriilbeliil 40 éve nyitott kérdésre sikeriilt vdlaszt taldlni. Ehhez 1j 6tletekre volt
sziikség a felsd korldt oldalardl nézve is, az alsé korldt tekintetében pedig 40 éve nem volt 1j,
a korabbinal jobb konstrukcié. Megjegyezziik, hogy F'F helyett BF-et irva (vagyis a First Fit
algoritmus helyett a Best Fit algoritmust véve) ugyanez az éles korlat teljesiil. A BF' algoritmusra
vonatkozo bizonyitdst a [17] cikk tartalmazza. Mivel ez a bizonyitds lényegesen bonyolultabb mint
a F'F' algoritmusra vonatkozé, a disszertdciéban nem szerepel.

4 Az FF algoritmus éles abszolit aranya a paraméteres esetben

Ebben a fejezetben a paraméteres esettel foglalkozunk, vagyis amikor a targyak mérete kicsi:
pi < 1/d, ahol d > 1 valamely rogzitett pozitiv egész paraméter (d = 1 esetén az eredeti, nem-
paraméteres esettel dllunk szemben.) Az F'F éles aszimptotikus ardnya (a paraméteres esetben is)
mér kezdetektdl ismert volt, Johnson dolgozata [32] (lasd a [34, 7] munkdkat is ezzel kapcsolatban)
alapjdn tudjuk hogy R.s(F'F;) = %, ha d > 1. Nem tudunk tovdbbi eredményrol, tehit az
F'F abszolit approximdcids ardnyat targyalé cikkrél sem a paraméteres esetben, egészen Dosa [18]
cikkéig, amely a kérdést megvélaszolja (40 év utdn). Valéjdban itt is t6bbrél van sz6, mint "csak"
az abszolit ardny megtaldldsdrdl: Tetszoleges OPT optimumérték esetén megéllapitjuk hogy F'F
értéke legfeljebb mekkora lehet, erre pontos becslést adunk. Legyen d > 1 és OPT > 1 tetszOleges
pozitiv egész szamok (OPT az optimalis megoldas értékét jelsli). Irjuk fel az OPT szdamot az
OPT = k- d+ r alakban, ahol k és r egész, valamint kissé szokatlan médon 1 < r < d. Ekkor a
kovetkez6 allitds érvényes:
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6. Tétel. (i), OPT =k-d+ 1 esetén az FF lddik mazimdlis szima

FE, < V?OPTJ — OPT +k,

(ii), OPT =k -d+r esetén ahol 2 <r <d, az FF lddik mazimadlis szima

FF, < [d;lOPT-‘ —OPT +k+1.

Az alsé korliat konstrukcidja: Ez a bizonyitds "lelke". Alkalmazzuk d > 1 esetére az FF
éles also korlatjat d = 1 esetén bizonyité konstrukciét, amelyet az el6zé fejezetben bemutattunk.
A targyaknak haromfajta csoportjit definidljuk. Tetszdleges 1 < ¢ < OPT index esetén barmely
optimélis ladédban a kovetkez6 d + 1 darab targy van:

e d—1darabaz A=1/(d+ 1)+ ¢ tdrgybol
° Blzl/(d—l—l)—(d—l)é—&“ és
e C;=1/(d+ 1) + ¢,

1\d 1 ,
aholg; = (5)' -6, e = 5@ 68 0 = copT-

A triikk megint az (mint d = 1 esetén) hogy az ¢; eltérések sorozata gyorsan csokkend. A
targyak beférnek O PT darab ldddba, és meg lehet adni a tdrgyak megfelel6 sorrendjét, amelyre az
FF a kivant "kelloképpen rossz" pakolast késziti el.

Az éles felsd korlat: Itt (egyediiliként a dolgozatban) nincs sziikségiink sulyfiiggvényekre,
mert ezek alkalmazdsa nélkiil is, csak a targyak méreteire vonatkozo Osszefiiggések és F'F' elemi
tulajdonsagainak felhasznélasdval megkapjuk az éles fels6 korlatot.

5 Az FF algoritmus éles aszimptotikus aranya az elemszamkorla-
tos esetben

Emlékeztetiink arra, hogy a lddapakoldsi feladat elemszdmkorldtos esetében (vagyis a BPCC fela-
datban), adott egy k > 2 paraméter, és barmely ladaba az 6sszméretre vonatkozé felsé korldton tul
az a feltétel is teljesiil hogy legfeljebb csak k darab targy pakolhaté a laddba. A feladattal sok cikk
foglalkozik, egyebek kozott: [36, 37, 35, 6, 1, 22, 23, 26]. Az F'F algoritmus megfelel$ véltozata
most a kovetkezd: A tdrgyakat valamely sorrend szerint pakolja. A kovetkezd targy mindig a leg-
els6 olyan ldddba keriil, ahova a mérete szerint befér (a lddédba keriilt targyak osszmérete nem fogja
meghaladni az 1-et), és a ldda a tdrgy pakoldsa elétt legfeljebb k — 1 targyat tartalmaz (tehdt a
targy befér ide az elemszamkorlatot tekintve is).

Az F'F -re vonatkoz6 elsé eredmény Krause, Shen és Schwetman 1975-6s [36] cikkébél szarmazik,
amelyben belatjak hogy F'F' aszimptotikus ardnya legfeljebb 2.7 — %. (Vannak ennél jobb ardnnyal
rendelkez6 algoritmusok, az aldbbiak szerint: k = 2 esetén optimadlis megoldas adhaté polinomidlis
idejlt pdrositasi algoritmussal. Nagyobb k esetén ismertek legfeljebb 2 approximéciés ardnnyal bird
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algoritmusok, ldsd [1], valamint & = 3,4,5,6 esetén vannak ennél is (tehdt min{2,2.7 — %}—nél)
jobb ardnnyal biré algoritmusok, ldsd [22].)

Az FF algoritmus aszimptotikus approximéciés ardnydnak pontos értékét tetszdleges k > 3
értékére, a kezdeti eredmények utan koriilbeliil negyven évvel sikeriilt meghatdrozni, Désa és Epstein
[19] és [20] cikkeiben. Kordbban csak k = 2 esetén volt ismert a pontos ardany. A kovetkezd tétel
fogalmazhaté meg (k = 4 és k = 10 két helyen szerepel):

7. Tétel. Az FF algoritmus aszimptotikus approximéciés aranya a kovetkezo:
(i) Res(FF)=25—2 hak =2,3,4,
(i) Res(FF) =38 — &, ha 4 <k <10,
(ili) Ros(FF)=2.7— 2, hak > 10.

5.1 A bizonyitassal kapcsolatban

A bizonyitss elég dsszetett: Ugy t{inhet, hogy az elemszamkorlat nélkiili esethez képest az éles korlst
siman k;?’—val novekszik: Az éles konstrukcié esetén minden optimélis ldddban kicsivel csokkentjiik
a tdrgyak méretét, és betesziink minden lddédba (ahol addig 3 targy volt) k — 3 tovdbbi targyat. Ez
valéban igy van, de csak k > 10 esetén. A kicsi k szamok esete viszonylag konnyfi (ahol k = 2, 3,4),
de nehézségek adédnak ha 5 < k < 9. A fels6 korldt bizonyitdsdhoz rdaddsul nem elég egyfajta
stlyfiiggvényt haszndlni, hanem mds és mds sulyfiiggvényre van sziikségiink, és nem egy esetben

ezek djfajta hasznédlatdra.

5.1.1 Egyszeriibb esetek

o k=3¢és k=4 esete

Az alabbi, egyszerii sulyfiiggvény alkalmazdsa "elegend6" (ahol a targy meéretét jeloljiik a-val):

B % ha 0<a§%,
w(a) = 1 ha l<a<li
p) 1 =9

Altalsban a kovetkezé médon megy a bizonyitds: osszehasonlitjuk az OPT illetve FF 1adék
stilyédt: az OPT 14dédk silya legfeljeb % — %, mig (legfeljebb k lada kivételével) az F'F 1addk silya
legaldabb 1. E két becslésbdl adédik, hogy tetszbleges input esetén FFF — k < W < (% — %)OPT,
ami az aszimptotikus ardny éles fels6 korlatjanak bizonyitdsa.

e k=5 esete

Egy kicsivel bonyolultabb silyfiiggvényre van sziikségiink:

3/15  ha a < 1/6,
4/15 h 1/6<a<1/4
oy 1% A 1/6<as<1/a
7/15 ha 1/4<a<1/3,
8/15 ha 1/3<a<1/2
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Az el6bbi esetekhez hasonléan bizonyithato, hogy tetszoleges O PT ldda sulya legfeljebb 32/15,
mig tetszbleges F'F' ldda siilya (legfeljebb 6 lada kivételével) legaldbb 1, amibél a kivént fels6 becslés
adédik, vagyis FF < 220PT — 6.

5.1.2 Bonyolultabb esetek: £k =6,7,8

Kideriil, hogy k& = 6,7,8 esete nehezebb. Bonyolultabb stlyfiiggvényre van sziikségiink, és ezt
szokatlan médon kell alkalmaznunk. Az 1/2-nél nagyobb méretii targyak silya 1. Az 1/2-nél nem
nagyobb térgyak w(a) stlyét a kovetkez6képpen definidljuk. A sily hdrom részbél dll. (Ilyen fajta
sulyozast a korabbiakban sehol sem alkalmaztak). Az els6 rész az tgynevezett alapsily (ground
weight), a masodik rész a skdldzott méret (scaled size), és a harmadik rész a bénusz (bonus).
Mindegyik rész nemnegativ. Bérmely térgy alapsilya (és ennek jelolése) legyen g(a) = 1/k. A

skdlazott méret legyen s(a) = 2(22211)(1 (ami monoton novekvd, hiszen k > 6). Végezetiil a bénusz

legyen
0 ha a<1/6,
202k—11) | 71—k <
b(a) = 2(2k_11)a—|— l%lik ha 1/6 < a <1/4,
sr— 0+ “3r ha 1/4<a<1/3,
2 ha 1/3<a<1/2.

Bemutatjuk a stly és a bénusz grafikonjat k = 6 esetére (a k = 7,8 esetekben ezekhez hasonlg).

0.4 —_— .
w(a) _ b(a) ** —
0.2 0.2
0.0 0.0 T
0.0 0.2 04 0.0 0.2 04
a a

A b(a) bénusz (és emiatt a w(a) sily is) most szakaszonként linedris és monoton nemcsokkend.
Egy térgy silya ekkor legyen w(a) = g(a)+s(a)+0b(a). Ennek (szokatlan médon) szakaddsi pontjai
vannak az 1/6, 1/4, 1/3, és 1/2 helyeken (a klasszikus BP feladat esetén, az F F-re alkalmazott
sulyfiiggvény csak az 1/2 helyen szakad).

A bizonyitds lépései (a sulyfiiggvény alkalmazdsa)

8(k—1)
3%

1. Elébb megbecsiiljiik az optimalis ldddk sulyat, tetszbéleges OPT ldda esetén w(B) <
2. Kovetkezik annak beldtdsa, hogy az F'F' 1ldddk silya legaldbb 1, kevés kivétellel.

a, ha 1 darab targy van a ldddban, akkor az ilyen ldaddkban 1 ldda kivételével olyan targyak
vannak amelyek 1/2-nél nagyobbak, ezek silya pedig 1.

b, Ha k darab tdrgy van a ldddban, csak az alapsilyuk is 1.
Maradt az amikor 2, ...,k — 1 tdrgy van a laddban, ezen eset vizsgalatdt két részre osztjuk.

¢, Ha a ldda szintje "elég nagy", pontosabban 2-ldda esetén legaldbb %, 3-ldda vagy 4-lada vagy
5-ldda esetén legaldabb %, akkor kozvetleniil beldthaté, hogy a ldda silya legaldbb 1.

Maradtak azok a laddk, ahol a szint kisebb. Vagyis azok a ldddk, amelyekre a ldadédban 2 térgy

van, és a szintje az (%, %] intervallumban van, vagy a ldddban 3 tdrgy van és a szintje az (%, %]
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intervallumban van, vagy a laddban 4 targy van és a szintje a (%, %] intervallumban van. Ekkor
is igaz, hogy (legfeljebb egy ldda kivételével) a ldda silya legaldbb 1. A bizonyitdsban van egy
kuriézum, nevezetesen a kovetkezd észrevételen alapul:

8. Allitds: Legyen B; és Bj két, egymdas utdany ldda. Ekkor

Mivel pdrosdval alkalmazzuk a laddkra ezt a becslést, minden esetben eggyel kevesebbszer al-
kalmazzuk mint az ilyen 14dék szdma, ezért van az allitdsban az "egy lada kivételével".

e, végiil maradtak azok a ldddk, ahol a szint még kisebb: 2-1dda amelynek szintje legfeljebb %, 3-
ldda amelynek szintje legfeljebb %, 4-1dda amelynek szintje lefeljebb %. Azonban ezek mindegyikébdl
csak egy darab lehet. Tovdbbd minden 5 vagy tobb targyat tartalmazé ldda szintje legaldbb 5/6,
legfeljebb egy lada kivételével. Ezzel beldttuk hogy FIF —8 < W < (8/3 —8/(3k))OPT, ami az
éles felsé korlat bizonyitasa.

5.1.3 a legnehezebb eset: £k =9

Ez az eset nem tdrgyalhaté egyiitt az el6z6 esettel, és a késdbbiekkel sem, kiilon figyelmet igényel.

Azon targyakat, amelyek az F'F' éltal k-laddba (vagyis ahol pontosan k darab tdrgy van) vannak
pakolva, a-tfpusu targynak vagy roviden a-targynak nevezziik, ezeknek a silya % A tobbi targyat
"tovabbi" targynak nevezziik az aldbbiakban. Ezutdn megkiilonboztetjiik az O PT lddédkat aszerint,
hogy hany tovabbi targyat tartalmaznak. Ha valamely ldda (OPT vagy F'F') nem tartalmaz tovabbi
targyat, a sulya 1, ezekkel késdbb nem kell foglalkoznunk. Lassuk azokat a ldddkat, amelyek
tartalmaznak tovdbbi tdrgyakat is.

a eset, ha valamely OPT ldda egy vagy kettd tovabbi targyat tartalmaz (és a tébbi targy benne
a-targy). Ezen ldddk neve v-ldda, és az ide pakolt tovdbbi targyakat y-tdrgyaknak nevezziik. Ha
a v targy mérete 1/2 folotti (akkor vi-targynak nevezziik és) a silya 1. A legfeljebb 1/2 méretii
targyakat pedig vo-targynak nevezziik, ezek stlya %—g.

b eset, Tekintsiik a masfajta OPT ladakat (amelyekben legaldbb harom tovabbi tdrgy van). Ilyen

laddban legfeljebb hat a-targy van, az ilyen ldddkat ¢-ldddnak hivjuk, és az ide pakolt tovdbbi

targyakat ¢-tdrgyaknak. FEzen ¢-tdrgyak silya bonyolultabb médon van definidlva: Ha a térgy

mérete nagyobb mint 1/2, akkor a stlya szokdsos médon 1. Ha ennél kisebb a mérete, akkor a
_ 32

targy silya w(a) = s(a) + b(a), ahol s(a) = 55a neve skdlazott méret, b(a) pedig a bénusz. (Most

nincs alapsily.) A bénusz az aldbbiakban van megadva.

¢

0 ha a<1/6
2a—2  ha 1/6 <a<1/5
~Bg+L ha 1/5<a<l1/4
-2a+ 42 ha 1/4 < a <3/10

2a—% ha 3/10<a<1/3
5 ha 1/3<a<1/2

A bénusz szakadési helyei 1/6, 1/4, és 1/3, monoton névekvd az (1/6,1/5) valamint (3/10,1/3)
intervallumokban, viszont monoton csokkend az (1/5,1/4] illetve (1/4,3/10] intervallumon, ami
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szokatlan. Viszont a silyfiiggvény ennek ellenére monoton névekvé marad az egész 0 < a < 1/2
intervallumon, més széval a boénuszfiiggvény nemnegativ értékil. Aldbb lathatjuk a sulyfiiggvényt

és a bonuszt.

w(a) 06 / b(a) 0.0 v
04 0.05
0.2
0.0 0.00
00 02 04 00 02 04
a a

A bizonyitas lépései:

1. Elészor megmutatjuk hogy valamely optimélis lada silya legfeljebb w(B) < 8/3 —8/27 = g—‘%.
Ezutdn megmutatjuk hogy az F'F' laddk silya legaldbb 1, legfeljebb kevés kivétellel.

2. A 9-ladak sulya 1.

3. Ha a ldddban van 1/2-nél nagyobb méretii targy (amely lehet ¢-térgy vagy ~i1-tdrgy), akkor
a ldda silya legalabb 1.

4. Ha a ldda szintje legaldbb %, akkor a stlya legaldbb 1. Legfeljebb egy 6'-laddnak (vagyis

legalabb 6 térgyat tartalmazé ldddnak) van 6/7 alatti szintje.

Maradtak a 2-14dék, 3-1addk, 4-ladak és 5-ldddk (vagyis ahol 2,...,5 targy van).

5. Legfeljebb négy ldda kivételével, ha a ldda tartalmaz ~yo-tdrgyat, és a liddban a targyak
szdma 2 és 5 kozotti, a ldda silya legaldbb 1.

Ezutdn egy kulcs észrevétel kovetkezik:

9. Allitas: Legyen ai,..., a; valahdny o-tipusi targy (2 < i <5), amelyekre a; < ... < a; < 1/2
és1>ay1+...+a; >1—ay teljesiil, ekkor a tdrgyak egyiittes silya legaldbdb 1.

6. Ennek segitségével sikeriil bizonyitani, hogy a ¢-tdrgyat tartalmazé 2-ladék, 3-ladék, 4-ladék
és 5-lddék silya legaldbb annyi mint az ilyen 1laddk szdma minusz 1: Az ilyen ldddkat sorba tessziik,
legyen B; és B; két egymds utédni ldda, a benniik levé legkisebb targyak pedig 41 és j1. Ekkor annak
a halmaznak, amely a j; tdrgyat tartalmazza, valamint B; tdrgyait is kivéve azonban az i; tdrgyat,
a silya legaldbb 1. Amit kaptunk, az az hogy FF(L) — 7 < W < (64/27)OPT(L), vagyis az
aszimptotikus approximdcios ardny k = 9 esetén legfeljebb 64/27.

5.1.4 a k> 10 eset

Ez az eset a dolgozat Appendix CCBP részében van. Némileg egyszeri{ibb eset mint a k = 9 esete,
azonban 10 < k < 20 esetén kiilonboz6 silyfiiggvényre van sziikségiink. A silyozds a kovetkezo:
Az a-térgyak silya marad %

a eset. Tekintsiik azokat az OPT laddkat, ahol legfeljebb kettd tovabbi targy van (és ezeken
kiviil csak a-tdrgyak). Ezek a 1dddk megint a v-14ddk, a benniik levé tovabbi targyak a ~-tdrgyak.
Amelyek mérete nagyobb mint 1/2, ezek a v;-tdrgyak, silyuk 1. A tobbi v-tdrgy neve vo-targy.

Ezeknek silya 10 < k < 19 esetén % — %, egyébként (vagyis ha k > 20), akkor %—3 = 0.65.
b eset. Tekintsiik a tsbbi O PT 14dét (aholis legaldbb harom tovabbi targy van). Ezekben legfeljebb

k — 3 darab a-targy van, a lada neve ¢-lada, az ilyen ldaddkban levd tovabbi tdrgyak neve ¢-targy.
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A ¢-térgyak silya a kovetkez6: Ha nagyobb a mérete mint fél, akkor a tdrgy suilya 1. Egyébként a
¢-targy silya w(a) = s(a) + b(a) alakd, ahol s(a) = 2a a skéldzott méret, b(a) pedig a bénusz. Ha
k > 20, akkor F'F' klasszikus stlyfiiggvénye (lasd: [34]) megfeleld, ekkor a bénusz a kovetkezd

0 ha a<1/6,
0.6a—0.1 hal/6<a<1/3,
0.1 ha 1/3 < a < 1/2,

b(a)

ez ugyanaz amit kordbban ldttunk. Viszont 10 < k£ < 19 esetében muszdj bizonyos mddositdsokat
alkalmaznunk. Erdekes médon, a silyfiiggvény ugyanaz marad mint az elébbi ha a targy mérete
legfeljebb 1/5, vagy legaldabb 3/10. Viszont e két szdm kozott a bénusz (és emiatt a sily) grafikonja
"szétnyilik".

;

0 ha a<1/6
0.6a — 0.1 ha 1/6<a<1/5
ba) (1.6 —29a—03+7 ha 1/5<a<1/4
a) =
(1.6 —2a—04+% ha 1/4<a<3/10
0.6a — 0.1 ha 3/10<a<1/3
(0.1 ha 1/3<a<1/2
Alébb szemléltetés kedvéért bemutatjuk a silyfiiggvény grafikonjét k = 10, k = 13 és k = 16
esetén:
0.7 0.7
w(a) ~ w(a) S w@ i e
0.0 0.0 0.0
00 02 04 00 02 04 00 02 04
a a a

majd a és a bénusz grafikonjit k = 10, k = 13 és k = 16 esetén.

b(a) 01

0.0

Lo

0.0 0.2 04
a

0.1 0.1
b() L(; b(a) M‘/
0.0 0.0
0.0 0.2 04 0.0 0.2 04
a
"rés" k = 10 esetén a legnagyobb, fokozatosan

Lathatd, hogy a grafikonokban kézépen a

Osszezarodik, majd k = 20 esetén és ettdl kezdve eltiinik. A bizonyitds a k = 9 eset mintdjdra
megy. Ebben az esetben a felsé korldtunk igy alakul: Az F'F algoritmus aszimptotikus approximé-

cidés ardnya k > 10 esetén legfeljebb 2.7 — 3 /k.
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5.2 Az éles alsé korlat

A bizonyitds k = 2,3, 4 esetén viszonylag egyszerti.

Amikor 5 < k < 10, a bizonyitds (vagyis a konstrukcié) nehézségét az adja, hogy héromfajta
optimélis 1ad&t kell alkalmazni. Egyik tipusi optimalis ldddban % + 9, % — 100, és k — 2 tovabbi §
méretil tdrgy van, ahol 0 < & < ﬁ s 0 < 377, L pedig egy (nagy) szdm amely oszthaté k-val. A
mésik tipusban a kovetkez6 méretii tdrgyak vannak: % +9, % + 209, i — 306, és k — 3 tovabbi térgy
0 mérettel. Utoljéra a harmadik tipusi laddkban, ezek kozott is a p-edikben a kovetkezd targyak

1 IS

vannak: % + 9, i + 35 €8s ;1 — 35 — 106, valamint k£ — 3 tovdbbi tdrgy J§ mérettel. Ezeket megfeleld

sorrendben adva az éles alsé korlat adédik.

A k > 10 esetben alkalmazhatjuk az elemszamkorlatozas nélkiili F'F algoritmus konstrukciéjat,
amelyet megadtunk két fejezettel kordbban. Egy kicsit csokkentjiik az %—l—s méretli targyak méretét,
legyen a konstrukciéban levé ezen targyak mérete csak % + /2. Ekkor minden optimalis ldddban
hdarom térgy van, és maradt még pontosan £/2 szabad hely. Ide betesziink k —3 darab apré targyat,
egyenként o7 mérettel. A kicsi targyak jonnek majd a lista elején, és igy a kordbbi 1.7 ardny helyett

ez k—g?’—val novekszik, és igy a megnovelt 1.7 4 % =27— % ardnyt kapjuk.

6 Kotegelt ladapakolas és Graf-lada pakolas

Ebben a fejezetben a Kotegelt ladapakolasi feladattal foglalkozunk (Batched Bin Packing, BBP),
a fejezet eredményei Désa [15] dolgozatédbdl szarmaznak. A feladat a kovetkezd: K egymds utdni
kotegben (batch) érkeznek a tdrgyak, egy-egy koteg targyai egyszerre érkeznek, és a kovetkezd
koteg érkezése el6tt ezeket mind el kell pakolni, rdadédsul igy, hogy nem tudunk semmit a késébbi
kotegekrsl. A modellt Gutin és térsai [30] cikke definidlta. K = 1 esetén ez éppen az offline
pakolasi feladat. Ha pedig minden koteg pontosan egy targyat tartalmaz, akkor meg az online
ladapakolasi feladattal allunk szemben (azzal az egyetlen kiilonbséggel, hogy a kitegek szama elére
adott). Eziltal a BBP feladat valamiképpen az offline lddapakoldsi feladatnak is és az online
feladatnak is dltaldnositdsa. Csak K = 2 esetével foglalkozunk. Ezen beliil két valtozattal: az
egyik vdltozatban azokat a ldddkat ahova az els6 koteg targyait pakoltuk, nem szabad haszndlni
a masik koteg targyainak pakoldsdra. Ennek a véltozatnak a neve: diszjunktiv modell, ez egy
yjonnan definidlt modell, Désa [15] cikkében szerepel elészor. A mésik valtozat neve (ahol szabad az
el6bb emlitett laddkat hasznélni) kiegészitd (augmenting) modell, ezt a modellt definidlta Gutinék
cikke. Megjegyezziik, hogy az optimadlis pakolds esetén megengedett kiilonbozd kotegbeli targyak
osszepakoldsa, mindkét valtozatban!

A [30] cikk K = 2 esetében megmutatja hogy Ras(A) > r ~ 1.3871 als6 korlat barmely A
algoritmus aszimptotikus approximdciés ardnyara, ahol r az r/(r — 1) — 3 = Inr/(2r — 2) egyenlet
megoldésa.

A feladatot a médsik oldalrdl kozelitjiik meg, megadjuk a BBP feladatra K = 2 esetére az els
approximéciés algoritmust. Ennek éles aszimptotikus approximéciés ardnya 19/12 =~ 1.5833. Gutin
és tarsai elébbi cikkén kiviil Désa [15] cikkéig gy tlinik nincs mds ezzel kapcsolatos publikécio.
Azéta megjelent még kettd cikk a témaval kapcsolatban: [2] és [25].

Kapcsolédé modellek. Lédapakolds konfliktussal (bin packing with conflicts, BPC): Ez egy
mésfajta dltaldnositdsa a BP feladatnak: bizonyos tdrgyak "konfliktusban" vannak, és nem pakol-
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haték ugyanabba a laddba (ldsd [31] vagy [24]). Egy ennél altalénosabb véltozatot graph-bin packing
vagyis gréaf-lada pakoldsi feladatként definidltunk (roviden GBP) a [5] cikkiinkben, ennek némileg
egyszerlisitett valtozata a kovetkezd: Adott egy graf, alsé és felso korldtokkal az éleken, valamint si-
lyokkal a pontjaiban. A pontokat (amelyek targyaknak felelnek meg) kell minél kevesebb, egységnyi
kapacitdsd laddkba pakolni. Béarmely ldddaba pakolt tdrgyak ¢sszmérete - szokds szerint - legfeljebb
1. Azonban tovabbi feltételek is vannak: Nevezetesen, barmely két a és b pont esetén, ha ezek éllel
Ossze vannak kotve a grafban, és az €l alsé illetve fels6 korlatja [ és u, akkor a és b csak olyan B;
illetve B; ladakba pakolhatd, amelyek indexeire teljesiil hogy | < |i — j| < u. (Vagyis egymdshoz
se tul kozel, se tul messze nem szabad ezeket pakolni.) Nyilvanval6, hogy ez a BPC feladat &l-
taldnositdsa, a kovetkezd moédon: legyen minden élen u = oo és | € {0,1}. A GBP feladat esetén
a [5] cikk (egyebek mellett) megad egy approximécidés algoritmust a feladat megolddsdra abban a
seciglis esetben amikor csak alsé korldtok vannak az éleken (vagyis barmely élre u = 00), és a graf
péaros. Az algoritmus abszolit approximéciés ardnya 3. Meglepd médon, a BPP feladatra adott
algoritmusunk megfelel$ alkalmazdsdval a GBP feladat ezen specidlis esetére is kapunk egy javitott
algoritmust. A javitott approximéciés ardny: 2.5833, abszolit értelemben véve.

6.1 A BBP feladatra vonatkozoé felsd korlat

FEgy approximéciés algoritmust definidlunk a BBP feladatra, K = 2 esetére. Pontosabban a
kovetkezdt végezziik: Az FFD algoritmust alkalmazzuk a két koteg (batch) pakoldsdra, egymastol
fiiggetleniil, tehdt kiilon ldddkba keriilnek a két koteg tdrgyai. Elobb a B targyait pakoljuk FF'D-
val, majd FFD-t alkalmazzuk a mdsodik kotegre, vagyis a By kotegre (a diszjunktiv modellt
alkalmazzuk). Az algoritmust a kovetkezéképpen jeloljiik: F'F'D(Bjy, Bs).

10. Tétel. FFD(By, By) < JOPT + 2, ahol a 19/12 szorz6 éles, nem csékkenthet.

A bizonyitas alapja, hogy osztdlyokba csoportositjuk a tdrgyakat, majd megfelel¢ sulyozést
vélasztunk. Ami a silyozds érdekessége, hogy a két kotegben levé targyak silyozdsa nem feltétleniil
ugyanaz. Aldbb bemutatjuk a megfelel6 eseteket és a sulyozast ezekben az esetekben. A bizonyitds
némileg hasonlé az F'F'D éles bizonyitdsahoz, amelyet a 2. fejezetben mutattunk be. Legyen X az
elsé koteg legkisebb tdrgya, és Y a maédsodik koteg legkisebb targya. Ezek mérete szerint megy az
esetek szétvilasztdsa.

1. eset, X <1/3 és Y < 1/3. Ekkor minden FFD bin szintje legalabb 2/3, kivéve esetleg az
utolsé ldddkat a két kotegnél, és az dllitdas adodik.

2. eset, X >1/3ésY > 1/3. Az 1/2-nél nagyobb targyak silya 1, a tobbi térgy silya 1/2, és
minden egyszeriien addédik.

3. eset, X > 1/3 ¢sY < 1/3. Ez az eset viszont lényegesen nehezebb, tobb alesetre kell
bontani, és a két koteg stlyai nem ugyanazok. Az elsd kotegbeli targyak stlya tovabbra is 1 illetve
1/2, aszerint hogy a méretiik félnél nagyobb vagy legfeljebb fél. Az els6 kotegben minden ldda silya
legalabb 1, legfeljebb 1 kivétellel. A mésodik koteg stlyai pedig ezek lesznek:

3.1. eset, 1/4 <Y < 1/3. Ekkor, egy Bs-targy (jeloljiik v-vel a targyat és a méretét is) Z-
tipusy, ha optimalis pakolaskor v k&zos ldddban van egy nagy (félnél nagyobb méretil) B;-targgyal.
A Z-targyak silya 7/12. A t6bbi v € Bo\ Z térgy silya w(v) = %v. Ekkor minden optima4lis 14da
sulya legfeljebb 19/12, és minden F'F'D(Bs) ldda silya legaldbb 1, legfeljebb kettd ldda kivételével.

3.2. eset, 1/6 <Y < 1/4. Megadjuk a Bs tdrgyak stlyait. Legyen valamely v € By targy
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irreguldris, ha v valamely félnél nagyobb méretii By tdrggyal van egyiitt pakolva az optimaélis pakolds
sordn. Ezeket két csoportba osztjuk. Ha v az egyediili By targy ebben az optimélis ldddban, akkor
a v targy tipusa: Z. Ellenkez6 esetben két irreguléris targy van ebben az optimaélis ldaddban, legyen
ezek tipusa U és V, ahol az U targy legaldbb akkora mint a V térgy. Az elébbi hdrom tipus
silya 7/12, 1/3, illetve 1/4. Barmely tovabbi v € Bo\ (Z U U U V) targy regularis By térgy, ezek
silya w(v) = %v. Ezek utdn a bizonyitds hasonlé az elébbi esethez, azonban jéval részletesebb

vizsgalatot igényel.

3.3. eset, 1/7 <Y < 1/6. Ekkor a kovetkezd osztélyozast vezetjiik be a Bg tdrgyak szaméra.

Osztély Suly
2/3<J<1 1
1/2<1<2/3 | 10/12
5/14 < H <1/2| 7/12
1/3<G<5/14 | 5/12
1/4<F<1/3 | 4/12
4/21 < E<1/4| 3/12
1/6 <D <4/21 | 2.5/12
1/7<C<1/6 2/12

Most is minden optimadlis ldda stlya legfeljebb 19/12, kivéve az (N, M, C') alaku laddkat (ahol
tehdt egy N, egy M és egy C targy van). Azonban ha vannak ilyen ldddk, kideriil hogy olyan F'F'D
ladék is lesznek ahol meg a sily lényegesen nagyobb mint 1, és ez ellensilyozza az el6bbi ladak
hidnyat. Ezutdn hosszadalmas esetszétvdlasztds megy arra nézve, hogy milyen targyak vannak
(illetve milyenek nincsenek) az F'F'D ldddkban, felhasznélva az FFD algoritmus alapvetd tulajdon-
sagait.

3.4. eset, Y < 1/7. Itt minden v € By silya w(v) = % -v, és minden viszonylag kénnyen kijon.

4. eset, X <1/3ésY > 1/3. Ez az eset parallel a 3. esettel.

Mit mondhatunk a "kiegészité" és a "megkiilonboztetd" (augmenting - disjunctive) modellek
kapcsolatardl? Csak az F'F'D algoritmus viselkedését tanulményoztuk ezen a téren, tehat hogy a két
modell esetén hogyan viselkedik. Az algoritmus aszimptotikus approximéciés ardnyat R, (FF D)
illetve Ry(F'F D)-vel jelolve a két modellben, K = 2 koteg esetén a kovetkezd teljesiil:

11. Tétel: R,(FFD) = Ry(FFD), ha K = 2.

Vagyis az algoritmus 19/12 ardnya nem javithato, ha az elsé kotegben levd térgyhalmaz pakoldsa
utdn ezeket a laddkat is felhasznaljuk a mésodik kotegbeli tdrgyhalmaz pakoldsahoz.

6.2 Javitott algoritmus a GBP feladatra

Az algoritmus a kovetkezd: Legyen a paros graf csucsainak két osztédlya A és B.

1. El6bb pakoljuk az A-ban levé pontokat (targyakat) az F'F'D algoritmussal laddkba. Ezutén
pakoljuk a B csicshalmaz csicsait is laddkba, megint az FFD algoritmussal, de az eldbbiek-
t6l kiilonbozd ldddkba, az el6bbi pakolastdl fiiggetleniil. Vagyis ebben a 1épésben az élekre
vonatkozé alsé korlatokat figyelmen kiviil hagyjuk.
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2. Hagyjunk d — 1 {ires 1ladédt a két lddahalmaz kozott, ahol d az élekre vonatkozé alsé korlatok
maximuma.

Ekkor teljesiil:
12. Tétel: Az algoritmus abszolit approximdcids ardnya 19/12 4+ 1 = 31/12.

7 A tézisek Osszefoglalasa

Ebben a fejezetben osszefoglaljuk az elébbi 6t tézisben szerepld eredményeket.

7.1 Elso tézis

Meghatdroztuk az FFD algoritmus pontos abszolit approximdciés ardnyédt. Pontosabban ennél
tobbet bizonyitottunk: Tetszoleges m egész esetén megadtuk azt a lehetd legnagyobb k szdmot,
amelyekre van olyan L input, hogy OPT(L) = m és FFD(L) = k. A pontos allitds a kovetkezd
tételben fogalmazhaté meg:

1. Tétel. Legyen L tetszbleges input, valamint legyen OPT(L) = 9n + i, ahol n egész és
2 <1 <10. Ekkor
lin+i+1, 2<i<5h;

<
FFD(L)—{ 1n+i+2, 6<i<10;

vagy ekvivalens mddon:

FFD(L) < |11/9-OPT(L)+6/9]. (3)
és a korldat minden n és © értékre éles, vagyis tetszoleges n és i esetén van olyan L input amelyre
az egyenlotlenség egyenloséggel teljesiil.

Hangsilyozzuk hogy az elébbi tdbldzatnak kordbban csak egy-két értéke volt ismert, ezdltal az
koriilbeliil 40 év 6ta megoldatlan kérdést valaszoltunk meg.

7.2 Masodik tézis

A kérdés felvetése utdn 40 évvel, megmutattuk hogy az F'F algoritmus abszolit approximécids
ardnya pontosan 1.7. Mads széval, ha az optimélis pakoldshoz OPT szdmu ldddra van sziikség,
akkor F'F' legfeljebb |1.7 - OPT| 14dat hasznél fel. Ennél tobb is igaz, az eléz6 fejezethez hasonlo
médon, most is sikeriil tetszéleges O PT értékre megadni, hogy legfeljebb hédny ldadat hasznél F'F,
hiszen megadunk olyan inputokat, amelyekre az F'F' éltal felhasznalt laddk szdma pontosan |1.7 -
OPT|. Kordbban csak néhany kisebb OPT értékre volt ismert FF-nek pontos felsé becslése.
Eredményiinket a kovetkez6 tétel fejezi ki pontosan:

2. Tétel. Legyen L tetszoleges input, ekkor
FF(L) < |1.7-OPT|,

és tetszoleges OPT értékre van olyan L input, amikor a fenti eqyenlotlenségben egyenloség szerepel,
vagyis a becslés minden OPT esetén éles.

A tétel bizonyitasdhoz egyrészt a kordbban hasznélt stlyfiiggvény technika tjfajta kezelésére (a
sulyfiiggvény felbontdsara két részre) volt sziikség, tovabba ujfajta alsé korlét konstrukciora.
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7.3 Harmadik tézis

A harmadik tézispontban a paraméteres esettel foglalkozunk, vagyis amikor a targyak mérete kicsi:
p; < 1/d, ahol d > 1 valamely rogzitett pozitiv egész paraméter. Megadtuk az F'F algoritmus éles
abszolit approximécids ardnyat. Valdjdban itt is tobbrol van szé: Tetszbleges O PT optimumérték
esetén megdllapitjuk hogy F'F értéke legfeljebb mekkora lehet, erre pontos becslést adunk. Legyen
d > 1és OPT > 1 tetszleges pozitiv egész szamok. Irjuk fel az OPT szémot az OPT =k -d +r
alakban, ahol k és r egész, valamint 1 < r < d. Ekkor a kovetkezo dllitdsok érvényesek:

6. Tétel. (i), OPT =k-d+1 esetén az FF lddik mazimalis szima

FF, < V;lOPTJ — OPT +k,

(ii), OPT =k -d+r esetén ahol 2 <r <d, az FF lidik mazimdlis szima

FF, < [d;lmﬂﬂ — OPT +k+1.

Ezéltal szintén egy koriilbelill 40 éve megoldatlan feladatot oldottunk meg.

7.4 Negyedik tézis

A kezdeti eredmények utdn koriilbeliil negyven évvel, meghatdroztuk az FF algoritmus aszimp-
totikus approximdcids ardnydnak pontos értékét tetszoleges k > 3 értékére. Kordbban csak k = 2
esetén volt ismert a pontos ardny. A pontos &llitas a kovetkezd tételben szerepel:

7. Tétel. Az FF algoritmus aszimptotikus approximéciés aranya a kovetkezo:
(i) Res(FF)=25—2 hak =2,3,4,
(i) Res(FF) =3 — &, ha 4 <k <10,
(iii) Ros(FF)=2.7—2 hak > 10.

7.5 Otodik tézis

Ebben a tézispontban a kotegelt lddapakoldsi feladattal foglalkozunk (Batched Bin Packing, BBP).
Ez azt jelenti, hogy K egymés utdni kotegben (batch) érkeznek a targyak, egy-egy koteg térgyai
egyszerre érkeznek, és a kovetkezd koteg érkezése elott ezeket mind el kell pakolni, rdadasul gy,
hogy nem tudunk semmit a késébbi kotegekrdl. Csak K = 2 esetével foglalkozunk. Megadtuk
a feladatra az elsé approximécids algoritmust. FEnnek éles aszimptotikus approximéciés ardnya
19/12 ~ 1.5833. Az algoritmust a kovetkeztképpen jeloljiikk: FFD(Bjy, Bs).Az allitds pontos meg-
fogalmazdsa a kovetkezo:

10. Tétel. FFD(By, By) < JOPT + 2, ahol a 19/12 szorz6 éles, nem csékkenthetd.

Tovébba foglalkoztunk még ebben a tézispontban a graph-bin packing (GBP) vagyis graf-lada
pakoldsi feladattal. Ennek némileg egyszeriisitett valtozata a kivetkezd: Adott egy grif, alsé és felsd
korldtokkal az éleken, valamint silyokkal a pontjaiban. A pontokat (amelyek targyaknak felelnek
meg) kell minél kevesebb, egységnyi kapacitasi laddkba pakolni. Bérmely ladaba pakolt targyak
Osszmérete - szokds szerint - legfeljebb 1. Azonban tovdbbi feltételek is vannak: Nevezetesen,
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bérmely két a és b pont esetén, ha ezek éllel 6ssze vannak kotve a gréafban, és az él alsé illetve felsd
korldtja [ és u, akkor a és b csak olyan B; illetve B; ldaddkba pakolhatd, amelyek indexeire teljesiil
hogy | < |i — j| < u. (Vagyis egymashoz se til kozel, se til messze nem szabad ezeket pakolni.)
Meglepd médon, a BPP feladatra adott algoritmusunk megfelelé alkalmazédsdval a GBP feladat
ezen specidlis esetére is kapunk egy javitott algoritmust. Az algoritmus abszolit approximécids
ardnya 2.5833, ami a jelenlegi legjobb eredmény erre a feladatra.
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