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1 Ládapakolási algoritmusok

A Ládapakolás (angolul bin packing, röviden: BP ) a Kombinatorikus Optimalizálás területéhez
tartozik. A feladat a következ½o: Adott n számú tárgy, ezek méretei a p1; p2; : : : ; pn pozitív, 0 és
1 közötti racionális számok. Azt keressük, hogy ezen tárgyakat hogyan lehet a lehet½o legkevesebb
ládába pakolni úgy, hogy bármely ládába legfeljebb 1 összméret½u tárgy pakolható. Az egy ládába
pakolt tárgyak összméretét szintnek (level) nevezzük. Közismert hogy a feladat NP -nehéz ([7, 27]).
Más kombinatorikus optimalizálási feladatokhoz hasonlóan, a BP -nek is két f½o területét külön-
böztethetjük meg, nevezetesen az o­ ine és online eseteket. O­ ine esetben valamely algoritmus
alkalmazása el½ott már minden szükséges információ rendelkezésünkre áll az inputról, míg az online
esetben a tárgyak egyenként érkeznek, és minden tárgy pakolását úgy a kés½obb érkez½o tárgyak
ismerete nélkül kell elvégeznünk. Mi most csak az o­ ine esettel foglalkozunk.

A ládapakolás a korai hetvenes években "született", nagyjelent½oség½u e szempontból D.S. John-
son [32] doktori disszertációja (valamint egyéb korai munkák). Johnson dolgozata alapvet½o ered-
ményeket közöl bizonyos "Fit típusú" algoritmusokkal kapcsolatban (mint például a First Fit (FF ),
Best Fit (BF ), és más algoritmusok). A FF algoritmus a következ½o: A tárgyakat egy adott L lista
szerinti sorrendben pakolja el. A soron következ½o tárgy mindig a legels½o ládába kerül, ahova befér.
Ha semelyik ládába nem fér be, akkor egy új ládát "nyit", és oda pakolja a tárgyat. (A ládák a
nyitásuk szerinti sorrend szerint vannak rendezve.) Amennyiben az L listában a tárgyak a méreteik
szerinti csökken½o sorrendben érkeznek, az FF algoritmust First Fit Decreasing (FFD) algoritmus-
nak hívjuk. A Best Fit (BF ) algoritmus esetén szintén adott sorrend szerint pakoljuk a tárgyakat, a
következ½o tárgy abba a ládába kerül (ahova befér, és) ahol a láda szintje a lehet½o legnagyobb lesz a
tárgy pakolása után. Ha nincs ilyen láda, új ládába kerül a tárgy. Sok egyéb algoritmus is van (lásd
pl. [7]), de most csak az ismertetett FF és BF algoritmussal, illetve FF bizonyos változataival
foglalkozunk. A BP feladat paraméteres változatában a tárgyak méretére az er½osebb 0 < pi � 1=d
feltétel teljesül minden i 2 f1; :::; ng index esetén, valamely adott d � 1 egész számra. Továbbá, a
"Cardinality Constrained Bin Packing (CCBP ), magyarul elemszámkorlátos ládapakolási feladat
esetén adott egy k paraméter (amely pozitív egész szám), és azon felül hogy minden láda szintje
legfeljebb 1, annak is teljesülnie kell hogy bármely láda legfeljebb k darab tárgyat tartalmaz.

Az algoritmusok hatékonyságát általában az approximációs aránnyal mérjük. Ennek két vál-
tozata van, az aszimptotikus és az abszolút approximációs arányok. Ezeket a következ½oképpen
de�niáljuk. Legyen L a pakolandó tárgyak halmaza (rendezett esetben listája). Jelöljön OPT egy
optimális algoritmust, A pedig egy tetsz½oleges algoritmust. (Nyilvánvaló, hogy mivel véges sok
tárgy van, ezek véges sokféleképpen pakolhatóak, emiatt optimális pakolás, és ezáltal optimális al-
goritmus mindenképpen van, legfeljebb nehezen tudjuk azt meghatározni.) Jelölje OPT (L) illetve
A(L) az algoritmusok által felhasznált ládák számát, miután az L lista tárgyait elpakolták. Ekkor

Rabs(A) = sup
L
fA(L)=OPT (L)g ;

az A algoritmus abszolút approximációs aránya, míg

Ras(A) = lim
n!1

sup
L
fA(L)=OPT (L) j OPT (L) � ng

az aszimptotikus approximációs arány. Korán kiderült, hogy az aszimptotikus arány sok esetben
viszonylag könnyen meghatározható. Már Ullman [41] korai munkája tartalmazza az Ras(FF ) � 1:7
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fels½o becslést, az élesség bizonyítása (vagyis Ras(FF ) � 1:7) pedig a Garey és társai [29] valamint
Johnson és társai [34] által írott cikkekben található. Ezen eredmények az els½ok között voltak,
amelyeket approximációs algoritmusokkal kapcsolatban (nemcsak a BP hanem egyáltalán az opti-
malizálás területén) közöltek. Az FF algoritmus abszolút approximációs aránya pontos értékének
meghatározása viszont lényegesen nehezebb, és azóta nyitott kérdés volt. Az ezzel kapcsolatos els½o
eredmény Simchi-Levy [40] 1994-es dolgozata tartalmazza, miszerint Rabs(FF ) � 1:75 (ugyanez a
fels½o becslés BF -re is áll). Dósa és Sgall 2013-as és 2014-es [16, 17] cikkeiben kapjuk meg a választ
az abszolút approximációs arnyának pontos értékére vonatkozó kérdésre, miszerint Rabs(FF ) =
Rabs(BF ) = 1:7.

Az FFD algoritmussal kapcsolatban Johnson 1973-as doktori dolgozatában [32] belátta, hogy
FFD(L) � 11=9 � OPT (L) + 4 teljesül tetsz½oleges L lista esetén. Szintén belátta hogy az aszimp-
totikus szorzó, vagyis 11=9 értéke "éles", nem csökkenthet½o. Az additív tag (vagyis az el½obbi 4-es)
csökkentésére azóta több próbálkozás történt, a lehet½o legkisebb értékének meghatározása Dósa
[13] cikkében illetve Dósa és társai [14] cikkében szerepel: FFD(L) � 11=9 � OPT (L) + 6=9. Ez
tisztázza az abszolút approximációs arány kérdését is, mint kés½obb ezt ismertetjük. Az FF algo-
ritmus paraméteres változata esetén (ahol pi � 1=d) az aszimptotikus arány éles értéke szerepel
már Johnson [32] dolgozatában, eszerint Ras(FFd) = d+1

d , ha d > 1. Az abszolút approximá-
ciós arányát viszont csak a közelmúltban sikerült meghatározni, tetsz½oleges d esetére, Dósa [18]
cikkében. Ezután foglalkozunk az FF algoritmusnak az elemszámkorlátos változatával. Az els½o
eredményeket tartalmazó cikk ([36]) 1975-ben jelent meg. Az algoritmus aszimptotikus aránya pon-
tos értékének meghatározása (a k = 2 eset kivételével) azóta nyitott volt. Ezt a kérdést válaszolja
meg Dósa és Epstein tetsz½oleges k � 3 esetén a [19, 20] cikkekben. A dolgozat végén két olyan
modellel foglalkozunk (kötegelt ládapakolási feladat, és gráf-láda pakolási feladat), ahol FFD segé-
dalgoritmusként szerepel. Az optimalizálás területén ez egy bevett dolog, hogy valamely újonnan
felmerült feladat esetén megpróbáljuk a "régi, bevált" algoritmusokat alkalmazni.

A BP területe rendkívül színes és szerteágazó, a fentiekben csak a dolgozat eredményeihez
szorosan kapcsolódó vonatkozásokat ismertettük, továbbiak találhatók például a következ½o munkák-
ban: [7, 8, 9, 10, 11, 12, 21, 42].

Végül néhány szó a bizonyításokról. A fels½o korlátok bizonyításához majdnem minden eset-
ben úgynevezett súlyfüggvényeket használunk. Ez egy régi bevált módszer, már az FF algoritmus
aszimptotikus arányának bizonyítása is súlyfüggvény segítségével történhet, lásd [33, 7]. Megjegyez-
zük azonban, hogy az alkalmazott súlyfüggvényekben mindig van valami újdonság a korábbiakhoz
képest, helyenként egészen "ravasz" módon kell ½oket de�niálni és alkalmazni, ezáltal vagyunk képe-
sek az éles eredmények elérésére. A Tézisfüzetben igyekszünk bemutatni ezeknek a súlyfüggvények
a használatát is. Az alsó korlátok bizonyításához pedig új konstrukciókat kellett alkalmazni, vagyis
olyan "kellemetlen" listát találni, amelyet a vizsgált algoritmus nem képes "jól" pakolni, néhány
ilyen új konstrukciót is bemutatunk.

A tézisfüzet szerkezete: Ebben a fejezetben egy rövid általános ismertet½ot adtunk a ládapakolási
feladatokkal, és megoldó algoritmusokkal kapcsolatban. A következ½o (2.-6.) fejezetek mindegyike
egy-egy tézispontnak felel meg. Ezután a 7. fejezetben összefoglaljuk a tézisekben szerepl½o ered-
ményeket. Legvégül található a hivatkozások listája. A tézis a szerz½onek a következ½o 12 publiká-
cióján alapul:

[4, 5, 13, 14, 15, 16, 17, 18, 19, 20, 21, 43].
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2 Az FFD algoritmus éles becslése

Az FFD algoritmus az FF algoritmus rendezett változata: rendezzük a tárgyakat méreteik szerinti
monoton csökken½o sorrendbe, és utánna alkalmazzuk az FF algoritmust (vagyis a soron következ½o
tárgy az els½o ládába kerül ahova befér). Valamely L input esetén jelentse FFD(L) illetve OPT (L)
az FFD illetve egy optimális algoritmus által kapott ládaszámot. Azt keressük, hogy az alábbi
egyenl½otlenségben:

FFD(L) � 11=9 �OPT (L) + C

melyik az a legkisebb konstans, amelyik a C helyére írható, úgy hogy az egyenl½otlenség tetsz½oleges
L input esetén igaz legyen. A 11=9 aszimptotikus együttható a lehet½o legkisebb, ezt már Johnson
PhD munkája tartamazza. Azonban az additív konstans legkisebb értékére vonatkozó kérdés azóta
nyitott volt. Johnson dolgozatában C értéke 4. B½o tíz évvel kés½obb Baker [3] közölt egy némileg
rövidebb bizonyítást, ahol C � 3. Kés½obb 1991-ben Yue [45] belátta hogy C � 1; valamint 2000-
ben Li és Yue [38] közölt egy vázlatot arról hogy az additív konstans legfeljebb 7=9, sejtésük szerint
a pontos érték 5=9. Azonban Dósa [13] megmutatta hogy a C konstans nem lehet kisebb mint
6=9, és ez tetsz½olegesen nagy inputra is igaz. Továbbá állítja hogy ez a 6=9 a lehet½o legkisebb
konstans. A [13] dolgozat egy konferenciakiadvány. Itt a bizonyítás két f½o részre van osztva. Az
egyik esetre vonatkozó bizonyítás szerepel a cikkben, valamint a másik esetre ad egy vázlatot. A
teljes bizonyítás Dósa és társai [14] cikkében szerepel. Valójában ez egy teljesen új bizonyítás: az
els½o esetben egy ügyes trükk segítségével a tárgyak nem 6 osztályba lettek sorolva mint a [13] cikk
esetén hanem 5 osztályba. Ezáltal ennek az esetnek a bizonyítása más: némileg egyszer½ubb és
rövidebb is. Szintén új osztályozás van megadva a másik nagy esetre is, és szerepel itt az erre az
esetre vonatkozó bizonyítás.

A [14] cikk valójában sokkal többet bizonyít, mint a fenti tétel, hiszen tetsz½oleges m egész esetén
megadja azt a lehet½o legnagyobb k számot, amelyekre van olyan L input, hogy OPT (L) = m és
FFD(L) = k. A kérdés triviális ha OPT (L) = 1, ekkor FFD(L) = 1. Ha OPT (L) = 2, akkor
a legrosszabb esetben FFD(L) = 3. Kicsivel nagyobb optimumérték esetén azonban a kérdés
korántsem egyszer½u. Már m = 5 esetén annak a kérdésnek az eldöntése hogy van-e olyan L input
amelyre OPT (L) = 5 és FFD(L) = 7, a 2007-es [43] cikk megjelenéséig nyitott volt (egyébként
nincs ilyen). Az alábbi tételben megadjuk a választ a fenti kérdésre.

1. Tétel. Legyen L tetsz½oleges input, valamint legyen OPT (L) = 9n + i, ahol n egész és
2 � i � 10. Ekkor

FFD(L) �
�
11n+ i+ 1; 2 � i � 5;
11n+ i+ 2; 6 � i � 10;

vagy ekvivalens módon:
FFD(L) � b11=9 �OPT (L) + 6=9c: (1)

és a korlát minden n és i értékre éles.

Hangsúlyozzuk hogy az el½obbi táblázatnak korábban csak egy-két értéke volt ismert, egészen a
[13] illetve [14] cikkek megjelenéséig. (A maradékosztályok azért szerepelnek egy kissé szokatlan
módon, mert így a táblázat egy kicsivel egyszer½ubb.) Csak n = 0 és i = 1 maradt ki a táblázatból,
ekkor OPT (L) = FFD(L) = 1.

A fels½o korlát bizonyítása. Ha a legkisebb (X-szel jelölt) tárgy mérete legfeljebb 2=11, vagy
ha legalább 1=4, akkor elemi módon elvégezhet½o a bizonyítás. A maradék eseteket két f½o esetre
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osztjuk, annak megfelel½oen, hogy a legkisebb tárgy mérete 1=5-nél nagyobb, vagy legfeljebb ekkora.

Az egyik nagy eset: 1=5 < X < 1=4. A tárgyakat osztályokba soroljuk. Legyen Z a legkisebb
reguláris tárgy az (1�X3 ; 13 ] intervallumból (vagyis olyan tárgy, amelyik nem "fallback" tárgy, vagyis
más szóval, amelyik az éppen utolsó nyitott ládába kerül) ha van ilyen tárgy, egyébként legyen
Z = 1=3. (A Z-re vonatkozó de�níció itt jelent½os dolog, ezáltal sikerül az osztályok számát 6
helyett 5-re lecsökkenteni. Ezáltal a lehetséges ládatípusok száma sokkal kisebb mintha 6 osztály
lenne, ezáltal a bizonyítás rövidebb és némileg egyszer½ubb is). Az osztályok az X és a Z értéke
alapján de�niálódnak. Az osztályok neve giant, big, medium, small, és tiny, és a kezd½obet½ukkel
rövidítjük ½oket. Minden osztály kap egy-egy súlyt is, ezek a súlyok most konstansok, az alábbiak
szerint.

Név Osztály Súly
Giant 1

2 < G 23

Big 1�X
2 < B � 1

2 18

Medium 1�Z
2 < M � 1�X

2 15

Small Z � S � 1�Z
2 12

Tiny X � T < Z 9

A tárgyak osztályozása 1=5 < X < 1=4 esetén

Jelölje egy A tárgy súlyát w(A), az összes tárgy összsúlyát w(L), valamely optimális vagy FFD
láda súlyát pedig w(B�) illetve w(B). De�niáljuk a következ½o fogalmakat:

� reserve (vagyis tartalék), egy optimális láda esetén ennek értéke res(B�) = 44 � w(B�).
Amikor az osztályok súlyát de�niáljuk, ezt úgy tesszük, hogy semelyik optimális láda súlya
ne legyen több mint 44, vagyis a tartalék minden optimális láda esetén nemnegatív.

� surplus (többlet), FFD ládák esetén de�niáljuk. Egy FFD láda többlete a következ½o:
sur(B) = w(B)� 36, ha ez az érték nemnegatív.

� shortage (vagyis hiány), FFD ládák esetén de�niáljuk, short(B) = 36�w(B), ha ez pozitív.

Ha minden FFD láda súlya legalább 36 (vagyis nincs hiány) tudván azt is hogy minden optimális
láda súlya legfeljebb 44, vagyis a tartalék nemnegatív, a következ½o egyenl½otlenség adódik:

36FFD(L) �
FFD(L)X
k=1

w (Bk) = w(L) =

OPT (L)X
k=1

w (B�k) �
44

36
� 36OPT (L),

és a bizonyítás kész is van. Sajnos az esetek többségében bizonyos FFD ládák súlya a kell½onél
kisebb, ezeken a helyeken hiány keletkezik. De szerencsére, ha vannak is ilyen ládák, olyanok is
lesznek, ahol meg többlet van. Az optimális ládák tartalékjait is felhasználva, egyszer½u levezetés
után kapjuk, hogy az eredeti (1) állításunk azzal ekvivalens, hogy az összes hiány lefedhet½o az
összes tartalékkal, valamint az összes többlettel, valamint még a 27 additív konstanssal. Ez utóbbit
rex(L)-lel jelölve tehát ezt az egyenl½otlenséget kell bizonyítanunk:

res(L) + sur(L) + rex(L) � short(L) (2)
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Ezek után megvizsgáljuk, hogy milyen típusú ládák lehetségesek, ezek a következ½ok:

OPT
23
18
15
12
9

G 1 1
B 1 1 1 1
M 1
S 1 2 1
T 1 2 1 1 2
r 0 3 2 2 5 8

2 1 1 1 1
2 1

1 1 3 2
5 5 8 2 11

3 2 2 1 1
2 1 3 2 4 3

8 2 11 5 14 8 17

FFD
23
18
15
12
9

G 1 1 1 1
B 1 2 1 1
M 1 1
S 1 1
T 1
s 5 2 �1 �4 0 �3 �6

1 1
1 1 1 1
1

1 2 1
1 2 1 1 2
8 5 6 6 3 0

2 1 1 1 1
2 1

1 1 3 2
3 3 0 6 �3

12
9

S 3 2 2 1 1
T 2 1 3 2 4
s 0 6 �3 3 �6 0

1
0

Ezek után esetszétválasztás következik, és egyesével belátjuk, hogy nincs olyan input amikor
(2) nem teljesül.

A másik nagy eset: 2=11 < X � 1=5. Ebben az esetben 8 osztályra van szükség, csak
az OPT ládák felsorolásához kell egy teljes oldal, és szintén az FFD ládákéhoz is. Legyen Z a
legkisebb reguláris tárgy az (1�X4 ; 14 ] intervallumban, ha van ilyen tárgy, egyébként legyen Z = 1=4.
Az osztályok és súlyok a következ½ok:

Név Súly
1
2 < G 23
1�X
2 < B � 1

2 18
1�Z
2 < C � 1�X

2 16
1
3 < M � 1�Z

2 14
1�X
3 < N � 1

3 12
1�Z
3 < S � 1�X

3 10
Z � U � 1�Z

3 9
X � V < Z 8

A tárgyak osztályozása 2=11 < X � 1=5 esetén

Könnyen igazolható, hogy az osztályok jól de�niáltak. A tartalék (reserve), többlet (surplus)
és hiány (shortage) az el½obbi esethez hasonló módon defniniálható. Alább felsoroljuk az összes
lehetséges ládatípust. Ezután a bizonyítás az el½oz½o esethez hasonló, kivéve hogy sokkal részletesebb
vizsgálatra van szükség.
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OPT
G 1 1 1 1 1 1 1
N 1 1
S 1 1
U 1 1 2 1
V 1 1 1 2
r 0 1 2 3 3 4 5

B 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 1
M 1 1 1
N 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1 2
r 2 2 3 4 2 4 5 6 6 7 8 8 9 10

1 1

1
2 3
1 2

C 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1 2
r 4 2 4 5 6 4 6 7 8 8 9 10 10 11 12

1 1 1 1

1
2 1

2 1 2 3
2 2 3 4

M 2 2 2 2 1 1 1 1 1 1 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 2
r 4 6 7 8 6 8 9 10 10 11 12 12 13 14

1 1 1 1 1 1 1 1
1 1

1 1
1 1 3 2 1
1 2 1 2 1 2 3
1 2 3 4 3 4 5 6

N 3 2 2 2 1 1 1 1 1 1
S 1 2 1 1
U 1 1 2 1
V 1 1 1 2
r 8 10 11 12 12 13 14 14 15 16

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
2 2 3 4 4 4 5 6 5 6 7 8

S 3 2 2 1 1 1
U 1 2 1
V 1 1 2
r 14 15 16 16 17 18

3 2 2 2 1 1 1 1
2 1 3 2 1

1 1 2 1 2 3
6 6 7 8 7 8 9 10

1

4
2

U 3 2 1
V 1 2 3
r 17 18 19 20

4 3 2 1
1 2 3 4

8 9 10 11 12

3 2 1
2 3 4 5
1 2 3 4
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FFD
G 1 1 1 1 1 1 1
B 1 2 1 1 1
C 1 1
M 1 1
N 1 1
S 1
U 1
V 1
s 5 3 1 �1 �3 �4 �5 0 �2 �4 �6

1 1 1 1 1 1 1

1 1
1 1

1 1 2 1
1 1 1 2

8 7 6 5 5 4 3

B 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 1
M 1 1 1
N 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1 2
s 6 6 5 4 6 4 3 2 2 1 0 0 �1 �2

1 1

1
2 3
7 6

C 2 1 1 1 1 1 1 1 1 1 1 1 1 1
M 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1 1
s 4 6 4 3 2 4 2 1 0 0 �1 �2 �2 �3

1 1 1 1

1
2 1

2 1 2 3
6 6 5 4

M 2 2 2 2 1 1 1 1 1 1 1 1 1
N 1 2 1 1 1
S 1 1 2 1 1
U 1 1 1 2 1
V 1 1 1 1
s 4 2 1 0 2 0 �1 �2 �2 �3 �4 �4 �5

1 1 1 1 1 1 1 1
1 1

1 1
1 1 3 2 1
1 2 1 2 1 2 3
7 6 5 4 5 4 3 2

N 3 2 2 2 1 1 1
S 1 2 1
U 1 1 2
V 1
s 0 �2 �3 �4 �4 �5 �6

2 2 2 2 1 1 1 1 1 1 1 1
1 2 1 1 1

2 1 2 1 3 2 1
1 1 2 1 1 2 1 2 3
6 6 5 4 4 4 3 2 3 2 1 0

S 3 2 2 2 1 1 1 1
U 2 1 3 2 1
V 1 1 2 1 2 3
s 2 2 1 0 1 0 �1 �2

1

4
6

4 3 2 1
1 2 3

0 �1 �2 �3

3 2 1
2 3 4 5
7 6 5 4

1
�1
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3 A First Fit algoritmus éles becslése

A következ½o eredmény a First Fit algoritmussal kapcsolatos. Emlékeztet½oül: a tárgyak valamely
(nem feltétlenül csökken½o) sorrendbe vannak rendezve. Ezután a tárgyakat ebben a sorrendben
pakoljuk, a soron következ½o tárgy az els½o olyan ládába kerül ahova befér, ha sehova sem fér be,
akkor pedig egy új ládába tesszük.

Az FF algoritmus aszimptotikus approximációs aránya 1:7, ez a korai eredmény már Ullman
1971-es [41] dolgozatában szerepel, és szintén tárgyalja ezt az eredményt [29, 34]. Az abszolút
approximációs aránnyal kapcsolatban a legkorábbi becslés Ullman el½obb idézett munkájából szár-
mazik, miszerint FF � 1:7 � OPT + 3 (az egyszer½uség kedvéért elhagytuk az L input jelölésést,
az egyenl½otlenséget úgy értjük, hogy az tetsz½oleges L input esetén teljesül, ahol FF illetve OPT
jelenti az FF illetve egy optimális algoritmus által használt ládák számát). Nem sokkal kés½obb
az additív tag 2-re csökkent ([29]), majd a [28] cikk belátta hogy FF � d1:7 � OPT e; mivel OPT
illetve FF egész, ez ekvivalens a következ½ovel: FF � 1:7 �OPT +0:9. B½o harminc évvel kés½obb az
additív tag tovább csökkent a becslésben: FF � 1:7 �OPT + 0:7 ([44]).

Ha elhagyjuk az additív tagot, a következ½o becslések szerepelnek az irodalomban: Simchi-Levy
[40] 1994-es cikkében bizonyította hogy FF � 1:75�OPT . Eztán Xia és Tan [44] illetve Boyar, Dosa
és Epstein [4] tovább csökkentette a szorzót 12=7 � 1:7143-ra, majd Németh 101=59 � 1:7119-re
[39].

Az alsó korlátot illet½oen, korán kiderült hogy van olyan input tetsz½olegesen nagy OPT esetén,
amikor FF = 1:7 � OPT és OPT = 10k + 1, valamint ismert volt egy példa amelyre FF = 17 és
OPT = 10, [29, 34]. (Ezen kívül a cikkek egyike megjegyzi, hogy van olyan példa amikor FF = 34
és OPT = 20, de ez már úgy t½unik sehol sem lett publikálva.)

A kérdés felvetése után 40 évvel, Dósa és Sgall [16, 17] cikkei mutatták meg hogy az FF algo-
ritmus abszolút approximációs aránya pontosan 1:7. Más szóval, ha az optimális pakoláshoz OPT
számú ládára van szükség, akkor FF legfeljebb b1:7 � OPT c ládát használ fel. Ennél több is igaz,
az el½oz½o fejezethez hasonló módon, most is sikerül tetsz½oleges OPT értékre megadni, hogy legfel-
jebb hány ládát használ FF , hiszen megadunk olyan inputokat, amelyekre az FF által felhasznált
ládák száma pontosan b1:7 �OPT c. Korábban csak néhány kisebb OPT értékre volt ismert FF -nek
pontos fels½o becslése. Eredményünket a következ½o tételben mondjuk ki pontosan:

2. Tétel. Legyen L tetsz½oleges input, ekkor

FF (L) � b1:7 �OPT c;

és tetsz½oleges OPT értékre van olyan L input, amikor a fenti egyenl½otlenségben egyenl½oség szerepel,
vagyis a becslés minden OPT esetén éles.
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3.1 Új eszközök a fels½o korlát bizonyításához

A f½o eszköz, az FF aszimptotikus arányának bizonyítására használt klasszikus súlyfüggvény ([7])
újszer½u tárgyalása. A súlyfüggvény alább balra szerepel (ahol a tárgy mérete a, a súlya pedig w(a)):

w(a) =

8>>>><>>>>:
6
5a ha a � 1

6 ;
6
5a+

3
5(a�

1
6) ha a 2

�
1
6 ;
1
3

�
;

6
5a+ 0:1 ha a 2

�
1
3 ;
1
2

�
;

6
5a+ 0:4 ha a > 1

2 :

v(a) =

8>>>><>>>>:
0 ha a � 1

6 ;
3
5(a�

1
6) ha a 2

�
1
6 ;
1
3

�
;

0:1 ha a 2
�
1
3 ;
1
2

�
;

0:4 ha a > 1
2 :

Láthatjuk, hogy a súlyfüggvény értéke mindenhol legalább 6
5a. Ezt e részt (amit skálázott

méretnek nevezünk) leválasztva a maradék neve legyen bónusz (jelöljük v(a)-val). A bónusz a
súlyfüggvényt½ol jobbra szerepel. Alább ezek gra�konjai láthatók 0 � a � 1=2 esetén.

0.0 0.2 0.4
0.0

0.7

a

w(a)

0.0 0.2 0.4
0.0

0.7

a

b(a)

Tárgyak tetsz½oleges B halmazára legyen v(B) =
P
a2B v(a) a bónusz összege, valamint s(B) =P

a2B s(a) az összméret. Hogy mire jó az el½obbi felbontás? Kiderül, hogy tetsz½oleges s(B) � 1 es-
etén (tehát olyan tárgyakra amelyek beférnek egy ládába) w(B) � 1:7 nagyon könnyen bizonyítható.
De ami még ennél is szerencsésebb: könnyen belátható, hogy az FF ládák összsúlya átlagosan
legalább 1 (kivéve kevés számú ládát). E két (alsó és fels½o) becslésb½ol aztán a kívánt állítás adódik.
Az el½obbi állítás az átlagos összsúlyra pontosan a következ½o állításban van megfogalmazva:

3. Állítás: Legyen B;C két olyan láda az FF alkalmazása után, ahol s(B) � 2=3, C legalább
két tárgyat tartalmaz, valamint B el½obb lett megnyitva az algoritmus által mint C. Ekkor 6

5s(B) +
v(C) � 1.

Vagyis a súly ezért lett szétbontva: Az egyik részét vesszük az egyik ládában (a skálázott
méretet) és a másik részét a következ½o ládában (a bónuszt), és ezek összege legalább 1. Az összegzés-
b½ol kimaradt az utolsó ládának a skálázott mérete, emiatt az el½oz½oekb½ol "csak" FF � 1:7�OPT+0:3
következik. Az éles becslés eléréséhez további eszközökre van szükség: A ládákat három osztályra
bontjuk a ládák szintje és a ládába pakolt tárgyak darabszáma szerint, ezután kissé részletesebb
vizsgálattal már FF � 1:7 � OPT + 0:1 adódik. Végül, az utolsó egytized eltüntetéséhez egyéb
eszközöket is be kell vetni: oszthatósági feltételeket is �gyelembe veszünk az OPT értékét illet½oen.

3.2 Új alsó korlát konstrukció

A fels½o korlátunk szerint már tudjuk hogy FF � b1:7�OPT c teljesül. A korai [41, 29, 34] munkákban
olyan alsó korlát konstrukció szerepel, amelyre FF = 1:7�OPT és OPT = 10k+1, ahol k tetsz½oleges
lehet. Az éles alsó korlátot (ami b1:7 �OPT c) Dósa és Sgall [16, 17] cikkei tartalmazzák.

1. a régi konstrukció kicsi módosítása. A korábbi [16] cikkben a következ½ot vettük
észre. Az eredeti (vagyis a [29, 34] cikkekben szerepl½oi) alsó korlát konstrukciót elég csak egy kicsit
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megváltoztatni, és az optimum értékét OPT = 10k + i alakba írva, a 10 maradékosztályból nyolc
esetben éles alsó korlátot kapunk. A következ½or½ol van szó. Az eredeti konstrukcióban olyan L input
(lista) szerepel, ahol a tárgyak három osztályból (régióból) kerülnek ki, ezek az A tárgyak, a B
tárgyak és a C tárgyak. Az els½o régióbeli tárgyak (az A tárgyak) mérete nagyjából 1=6 (lehetnek
ennél kicsivel kisebbek vagy nagyobbak is), a B tárgyak nagyjából 1=3 méret½uek (kicsivel kisebbek
vagy nagyobbak), és a C tárgyak mérete pontosan 1=2 + �, ahol � > 0. Ezek a tárgyak ebben a
sorrendben érkeznek. Ezt a listát csak egy kicsit módosítjuk, adunk néhány tárgyat a listához az
els½o régióbeli tárgyak el½ott, vagy az els½o és második között, vagy a második és harmadik között,
vagy a lista végén. A kib½ovített lista legyen L0. A hozzáadott tárgyak olyanok, hogy ezek mind
új ládákba kerülnek, pontosabban az L listabeli tárgyak csak L listabeli tárgyakkal kerülnek egy
ládába továbbra is. Más néven, az eredeti lista egy "fekete doboz"-ként funkcionál. A módosítás
után kapunk egy megfelel½o L0 listát, ami az alábbi tételt bizonyítja:

4. Tétel. a, Tetsz½oleges k � 1 és 0 � i � 9 esetén, van olyan I input amelyre OPT = 10k+ i
és FF értékére az alábbi táblázat fels½o sorában lev½o becslés teljesül. (Az alsó sor az összehasonlítás
kedvéért a fels½o korlátot tartalmazza.)

i = 0 1 2 3 4 5 6 7 8 9

FF � 17k+ �1 1 3 4 6 8 10 11 13 15

FF � b17k + 1:7ic = 17k+ 0 1 3 5 6 8 10 11 13 15

b, Továbbá, i = 1; : : : ; 9 esetére van olyan input amelyre OPT = i és FF = b1:7 � ic.
Ezáltal a tíz maradékosztály közül 8 esetben éles korláttal rendelkezünk. Ezek a kivételek: i = 0

and i = 3. Ezekre az esetekre viszont a konstrukció (a régi konstrukció módosítása) nem m½uködik.
Emiatt egy egészen új konstrukcióval állott el½o a [17] cikk.

2. Új konstrukció. Az új konstrukció egyszer½ubb az eredetinél, és az éles becslést sikerül vele
meghatározni minden maradékosztály esetén. Ismertetjük a konstrukció lényegét, az egyszer½uség
kedvéért csak OPT = 10k esetére. Legyen " > 0 egy kicsi racionális szám. Mint a régi konstrukció
esetén, most is három régióból választjuk a tárgyakat, az A tárgyak (OPT darab) mérete nagyjából
1=6, az OPT darab B tárgy mérete nagyjából 1=3, végül jön még OPT darab C = 1=2 + " méret½u
tárgy. Az optimális pakolás esetén minden láda tele van, és egyet-egyet tartalmaz mindhárom
típusú tárgyból.

Az FF pakolás a következ½o: Keletkezik 2k láda az A tárgyakból. Ezek között a ládák között
az els½o ládában 6 tárgy van, az utolsóban csak 4, a többiben 5 darab tárgy. Ezután a B tárgyak
párosával új ládákba kerülnek. Végül a C tárgyak mindegyike új ládába kerül, így lesz FF = 17k.
Eddig ez hasonló a régi konstrukcióhoz, a különbség abban van, hogy hogyan tér el az A tárgyak
mérete 1=6-tól (illetve a B tárgyak mérete 1=3-tól). Csak egy kicsi �i az eltérés mértéke, de a
lényeg az, hogy ez az eltérés exponenciálisan csökken½o. Az A tárgyak mérete így van megadva:
1=6� �1, 1=6 + �2, 1=6� �3, 1=6 + �4, vagyis Ai = 1=6 + (�1)i�i, és az egymás utáni delták aránya
nagy, pl �i=�i+1 = 10. A legels½o delta is kicsinek van választva, például �1 = 1=100 megfelel½o,
akkor a legutolsó (10k-adik) delta még sokkal kisebb, végül az " pedig még ennél is kisebbnek van
választva. Ez a lelke a konstrukciónak, az el½obbiek miatt mindig csak a legnagyobb delta mérete
a meghatározó az egy tárgyba pakolt tárgyak esetében, és így az el½obb leírt pakolás biztosítható
(vagyis ahogy jönnek a tárgyak egyenként, tényleg az el½obb leírt ládákba kerülnek (oda beférnek),
de kés½obbi tárgy már nem kerül ezekbe a ládákba).

Kicsit részletezve a pakolás kezdetét: Az L lista elejére a hat legkisebb A tárgyat tesszük
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(ezeket: 1=6� �1, 1=6� �3; :::; 1=6� �11), ezek az els½o FF ládába kerülnek, itt a tárgyak összmérete
majdnem 1, ide több tárgy nem kerül. Az els½o régió végére a négy legnagyobb A tárgyat tesszük
(vagyis ezeket: 1=6 + �2; :::; 1=6 + �8).

Az L listának az els½o 6 tárgy után következ½o 5 tárgyát úgy válogatjuk össze az A tárgyakból,
hogy ide választunk 3 tárgyat a megmaradt legkisebbek közül, és kett½ot a megmaradt legnagyobbak
közül. Vagyis ide kerül az 1=6+ �10 méret½u tárgy, de mivel az 1=6� �1; :::; 1=6� �11 méret½uek ekkor
már el lettek pakolva (az els½o ládába), ezek már nem "veszélyesek" az 1=6 + �10 méret½u tárgyra
nézve, vagyis a második ládában az ilyen méret½u tárgyak lesznek: 1=6 + �10, 1=6 + �12 , valamint
1=6� �13, 1=6� �15, 1=6� �17. Itt az összméret 5=6 fölötti, és hogy mennyivel van "fölötte", abban
csak �10 mérete a meghatározó. A még nem pakolt legkisebb tárgy mérete 1=6 � �19, ez nyilván
nem fog már beférni a második ládába (mert a �i eltérések nagysága gyorsan csökken½o), és akkor
másik tárgy sem férhet már ide. A második ládába tehát megérkezett a megígért 5 darab A tárgy,
és a kés½obbiekben más tárgy már nem kerül ide. És így tovább, a harmadik ládába is megérkezik 5
darab tárgy és továbbiak már nem férnek oda, stb. Mivel így az els½o régióbeli tárgyak pakolásakor
kett½o "nagy" és három "kicsi" tárgy megy egy-egy ládába, a kicsik hamarabb elfogynak, utánna
már csak 1=6-nál nagyobb tárgyakat pakolunk. Az utolsó ládába (az els½o régió pakolásakor) a 4
legnagyobb A tárgy került (ezek között 1=6+�2 és 1=6+�4), ide már nem fog kés½obbi tárgy beférni,
mert ezek legkisebbike 1=3� �2� " méret½u. Ez nem fér be, mert " < �10k << �4. Ezután a közepes
méret½u tárgyak kettesével lesznek pakolva, végül a legnagyobb tárgyak is mind saját (új) ládába
mennek. A következ½o tétel adódik a konstrukció által:

5. Tétel. Tetsz½oleges OPT érték esetén van olyan input, amelyre FF = b1:7 �OPT c.
Ezáltal egy körülbelül 40 éve nyitott kérdésre sikerült választ találni. Ehhez új ötletekre volt

szükség a fels½o korlát oldaláról nézve is, az alsó korlát tekintetében pedig 40 éve nem volt új,
a korábbinál jobb konstrukció. Megjegyezzük, hogy FF helyett BF -et írva (vagyis a First Fit
algoritmus helyett a Best Fit algoritmust véve) ugyanez az éles korlát teljesül. A BF algoritmusra
vonatkozó bizonyítást a [17] cikk tartalmazza. Mivel ez a bizonyítás lényegesen bonyolultabb mint
a FF algoritmusra vonatkozó, a disszertációban nem szerepel.

4 Az FF algoritmus éles abszolút aránya a paraméteres esetben

Ebben a fejezetben a paraméteres esettel foglalkozunk, vagyis amikor a tárgyak mérete kicsi:
pi � 1=d, ahol d � 1 valamely rögzített pozitív egész paraméter (d = 1 esetén az eredeti, nem-
paraméteres esettel állunk szemben.) Az FF éles aszimptotikus aránya (a paraméteres esetben is)
már kezdetekt½ol ismert volt, Johnson dolgozata [32] (lásd a [34, 7] munkákat is ezzel kapcsolatban)
alapján tudjuk hogy Ras(FFd) = d+1

d , ha d > 1. Nem tudunk további eredményr½ol, tehát az
FF abszolút approximációs arányát tárgyaló cikkr½ol sem a paraméteres esetben, egészen Dósa [18]
cikkéig, amely a kérdést megválaszolja (40 év után). Valójában itt is többr½ol van szó, mint "csak"
az abszolút arány megtalálásáról: Tetsz½oleges OPT optimumérték esetén megállapítjuk hogy FF
értéke legfeljebb mekkora lehet, erre pontos becslést adunk. Legyen d > 1 és OPT � 1 tetsz½oleges
pozitív egész számok (OPT az optimális megoldás értékét jelöli). Írjuk fel az OPT számot az
OPT = k � d + r alakban, ahol k és r egész, valamint kissé szokatlan módon 1 � r � d. Ekkor a
következ½o állítás érvényes:

12



6. Tétel. (i), OPT = k � d+ 1 esetén az FF ládák maximális száma

FFd �
�
d+ 1

d
OPT

�
= OPT + k,

(ii), OPT = k � d+ r esetén ahol 2 � r � d, az FF ládák maximális száma

FFd �
�
d+ 1

d
OPT

�
= OPT + k + 1.

Az alsó korlát konstrukciója: Ez a bizonyítás "lelke". Alkalmazzuk d > 1 esetére az FF
éles alsó korlátját d = 1 esetén bizonyító konstrukciót, amelyet az el½oz½o fejezetben bemutattunk.
A tárgyaknak háromfajta csoportját de�niáljuk. Tetsz½oleges 1 � i � OPT index esetén bármely
optimális ládában a következ½o d+ 1 darab tárgy van:

� d� 1 darab az A = 1=(d+ 1) + � tárgyból

� Bi = 1=(d+ 1)� (d� 1)� � "i, és

� Ci = 1=(d+ 1) + "i,

ahol "i = (1d)
i � ", " = 1

5(d+1) , és � = "OPT .

A trükk megint az (mint d = 1 esetén) hogy az "i eltérések sorozata gyorsan csökken½o. A
tárgyak beférnek OPT darab ládába, és meg lehet adni a tárgyak megfelel½o sorrendjét, amelyre az
FF a kívánt "kell½oképpen rossz" pakolást készíti el.

Az éles fels½o korlát: Itt (egyedüliként a dolgozatban) nincs szükségünk súlyfüggvényekre,
mert ezek alkalmazása nélkül is, csak a tárgyak méreteire vonatkozó összefüggések és FF elemi
tulajdonságainak felhasználásával megkapjuk az éles fels½o korlátot.

5 Az FF algoritmus éles aszimptotikus aránya az elemszámkorlá-
tos esetben

Emlékeztetünk arra, hogy a ládapakolási feladat elemszámkorlátos esetében (vagyis a BPCC fela-
datban), adott egy k � 2 paraméter, és bármely ládába az összméretre vonatkozó fels½o korláton túl
az a feltétel is teljesül hogy legfeljebb csak k darab tárgy pakolható a ládába. A feladattal sok cikk
foglalkozik, egyebek között: [36, 37, 35, 6, 1, 22, 23, 26]. Az FF algoritmus megfelel½o változata
most a következ½o: A tárgyakat valamely sorrend szerint pakolja. A következ½o tárgy mindig a leg-
els½o olyan ládába kerül, ahova a mérete szerint befér (a ládába került tárgyak összmérete nem fogja
meghaladni az 1-et), és a láda a tárgy pakolása el½ott legfeljebb k � 1 tárgyat tartalmaz (tehát a
tárgy befér ide az elemszámkorlátot tekintve is).

Az FF -re vonatkozó els½o eredmény Krause, Shen és Schwetman 1975-ös [36] cikkéb½ol származik,
amelyben belátják hogy FF aszimptotikus aránya legfeljebb 2:7� 2:4

k . (Vannak ennél jobb aránnyal
rendelkez½o algoritmusok, az alábbiak szerint: k = 2 esetén optimális megoldás adható polinomiális
idej½u párosítási algoritmussal. Nagyobb k esetén ismertek legfeljebb 2 approximációs aránnyal bíró

13



algoritmusok, lásd [1], valamint k = 3; 4; 5; 6 esetén vannak ennél is (tehát minf2; 2:7 � 2:4
k g-nél)

jobb aránnyal bíró algoritmusok, lásd [22].)

Az FF algoritmus aszimptotikus approximációs arányának pontos értékét tetsz½oleges k � 3
értékére, a kezdeti eredmények után körülbelül negyven évvel sikerült meghatározni, Dósa és Epstein
[19] és [20] cikkeiben. Korábban csak k = 2 esetén volt ismert a pontos arány. A következ½o tétel
fogalmazható meg (k = 4 és k = 10 két helyen szerepel):

7. Tétel. Az FF algoritmus aszimptotikus approximációs aránya a következ½o:
(i) Ras(FF ) = 2:5� 2

k , ha k = 2; 3; 4,
(ii) Ras(FF ) = 8

3 �
8
3k , ha 4 � k � 10,

(iii) Ras(FF ) = 2:7� 3
k , ha k � 10.

5.1 A bizonyítással kapcsolatban

A bizonyítás elég összetett: Úgy t½unhet, hogy az elemszámkorlát nélküli esethez képest az éles korlát
simán k�3

k -val növekszik: Az éles konstrukció esetén minden optimális ládában kicsivel csökkentjük
a tárgyak méretét, és beteszünk minden ládába (ahol addig 3 tárgy volt) k� 3 további tárgyat. Ez
valóban így van, de csak k � 10 esetén. A kicsi k számok esete viszonylag könny½u (ahol k = 2; 3; 4),
de nehézségek adódnak ha 5 � k � 9. A fels½o korlát bizonyításához ráadásul nem elég egyfajta
súlyfüggvényt használni, hanem más és más súlyfüggvényre van szükségünk, és nem egy esetben
ezek újfajta használatára.

5.1.1 Egyszer½ubb esetek

� k = 3 és k = 4 esete

Az alábbi, egyszer½u súlyfüggvény alkalmazása "elegend½o" (ahol a tárgy méretét jelöljük a-val):

w(a) =

(
1
k ha 0 < a � 1

4 ,
1
2 ha 1

4 < a �
1
2 ,

Általában a következ½o módon megy a bizonyítás: összehasonlítjuk az OPT illetve FF ládák
súlyát: az OPT ládák súlya legfeljeb 5

2 �
2
k , míg (legfeljebb k láda kivételével) az FF ládák súlya

legalább 1. E két becslésb½ol adódik, hogy tetsz½oleges input esetén FF � k � W � (52 �
2
k )OPT ,

ami az aszimptotikus arány éles fels½o korlátjának bizonyítása.

� k = 5 esete

Egy kicsivel bonyolultabb súlyfüggvényre van szükségünk:

w(a) =

8>>>><>>>>:
3=15 ha a � 1=6,
4=15 ha 1=6 < a � 1=4,
7=15 ha 1=4 < a � 1=3,
8=15 ha 1=3 < a � 1=2.
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Az el½obbi esetekhez hasonlóan bizonyítható, hogy tetsz½oleges OPT láda súlya legfeljebb 32=15,
míg tetsz½oleges FF láda súlya (legfeljebb 6 láda kivételével) legalább 1, amib½ol a kívánt fels½o becslés
adódik, vagyis FF � 32

15OPT � 6.

5.1.2 Bonyolultabb esetek: k = 6; 7; 8

Kiderül, hogy k = 6; 7; 8 esete nehezebb. Bonyolultabb súlyfüggvényre van szükségünk, és ezt
szokatlan módon kell alkalmaznunk. Az 1=2-nél nagyobb méret½u tárgyak súlya 1. Az 1=2-nél nem
nagyobb tárgyak w(a) súlyát a következ½oképpen de�niáljuk. A súly három részb½ol áll. (Ilyen fajta
súlyozást a korábbiakban sehol sem alkalmaztak). Az els½o rész az úgynevezett alapsúly (ground
weight), a második rész a skálázott méret (scaled size), és a harmadik rész a bónusz (bonus).
Mindegyik rész nemnegatív. Bármely tárgy alapsúlya (és ennek jelölése) legyen g(a) = 1=k. A
skálázott méret legyen s(a) = 2(2k�11)

3k a (ami monoton növekv½o, hiszen k � 6). Végezetül a bónusz
legyen

b(a) =

8>>>><>>>>:
0 ha a � 1=6;
2(2k�11)

3k a+ 7�k
3k ha 1=6 < a � 1=4;

2(2k�11)
3k a+ 10�k

3k ha 1=4 < a � 1=3;
2
k ha 1=3 < a � 1=2:

Bemutatjuk a súly és a bónusz gra�konját k = 6 esetére (a k = 7; 8 esetekben ezekhez hasonló).

0.0 0.2 0.4
0.0

0.2

0.4

a

w(a)

0.0 0.2 0.4
0.0

0.2

0.4

a

b(a)

A b(a) bónusz (és emiatt a w(a) súly is) most szakaszonként lineáris és monoton nemcsökken½o.
Egy tárgy súlya ekkor legyen w(a) = g(a)+s(a)+b(a). Ennek (szokatlan módon) szakadási pontjai
vannak az 1=6, 1=4, 1=3, és 1=2 helyeken (a klasszikus BP feladat esetén, az FF -re alkalmazott
súlyfüggvény csak az 1=2 helyen szakad).

A bizonyítás lépései (a súlyfüggvény alkalmazása)

1. El½obb megbecsüljük az optimális ládák súlyát, tetsz½oleges OPT láda esetén w(B) � 8(k�1)
3k .

2. Következik annak belátása, hogy az FF ládák súlya legalább 1, kevés kivétellel.

a, ha 1 darab tárgy van a ládában, akkor az ilyen ládákban 1 láda kivételével olyan tárgyak
vannak amelyek 1=2-nél nagyobbak, ezek súlya pedig 1.

b, Ha k darab tárgy van a ládában, csak az alapsúlyuk is 1.

Maradt az amikor 2; :::; k � 1 tárgy van a ládában, ezen eset vizsgálatát két részre osztjuk.
c, Ha a láda szintje "elég nagy", pontosabban 2-láda esetén legalább 3

4 , 3-láda vagy 4-láda vagy
5-láda esetén legalább 5

6 , akkor közvetlenül belátható, hogy a láda súlya legalább 1.

Maradtak azok a ládák, ahol a szint kisebb. Vagyis azok a ládák, amelyekre a ládában 2 tárgy
van, és a szintje az (23 ;

3
4 ] intervallumban van, vagy a ládában 3 tárgy van és a szintje az (

3
4 ;
5
6 ]
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intervallumban van, vagy a ládában 4 tárgy van és a szintje a (45 ;
5
6 ] intervallumban van. Ekkor

is igaz, hogy (legfeljebb egy láda kivételével) a láda súlya legalább 1. A bizonyításban van egy
kuriózum, nevezetesen a következ½o észrevételen alapul:

8. Állítás: Legyen Bi és Bj két, egymás utáni láda. Ekkor

g(Bi) + s(Bi) + b(Bj) � 1:

Mivel párosával alkalmazzuk a ládákra ezt a becslést, minden esetben eggyel kevesebbszer al-
kalmazzuk mint az ilyen ládák száma, ezért van az állításban az "egy láda kivételével".

e, végül maradtak azok a ládák, ahol a szint még kisebb: 2-láda amelynek szintje legfeljebb 2
3 , 3-

láda amelynek szintje legfeljebb 3
4 , 4-láda amelynek szintje lefeljebb

4
5 . Azonban ezek mindegyikéb½ol

csak egy darab lehet. Továbbá minden 5 vagy több tárgyat tartalmazó láda szintje legalább 5=6,
legfeljebb egy láda kivételével. Ezzel beláttuk hogy FF � 8 � W � (8=3 � 8=(3k))OPT , ami az
éles fels½o korlát bizonyítása.

5.1.3 a legnehezebb eset: k = 9

Ez az eset nem tárgyalható együtt az el½oz½o esettel, és a kés½obbiekkel sem, külön �gyelmet igényel.

Azon tárgyakat, amelyek az FF által k-ládába (vagyis ahol pontosan k darab tárgy van) vannak
pakolva, �-típusú tárgynak vagy röviden �-tárgynak nevezzük, ezeknek a súlya 1

k . A többi tárgyat
"további" tárgynak nevezzük az alábbiakban. Ezután megkülönböztetjük az OPT ládákat aszerint,
hogy hány további tárgyat tartalmaznak. Ha valamely láda (OPT vagy FF ) nem tartalmaz további
tárgyat, a súlya 1, ezekkel kés½obb nem kell foglalkoznunk. Lássuk azokat a ládákat, amelyek
tartalmaznak további tárgyakat is.

a eset, ha valamely OPT láda egy vagy kett½o további tárgyat tartalmaz (és a többi tárgy benne
�-tárgy). Ezen ládák neve 
-láda, és az ide pakolt további tárgyakat 
-tárgyaknak nevezzük. Ha
a 
 tárgy mérete 1=2 fölötti (akkor 
1-tárgynak nevezzük és) a súlya 1. A legfeljebb 1=2 méret½u 

tárgyakat pedig 
2-tárgynak nevezzük, ezek súlya 16

27 .

b eset, Tekintsük a másfajta OPT ládákat (amelyekben legalább három további tárgy van). Ilyen
ládában legfeljebb hat �-tárgy van, az ilyen ládákat �-ládának hívjuk, és az ide pakolt további
tárgyakat �-tárgyaknak. Ezen �-tárgyak súlya bonyolultabb módon van de�niálva: Ha a tárgy
mérete nagyobb mint 1=2, akkor a súlya szokásos módon 1. Ha ennél kisebb a mérete, akkor a
tárgy súlya w(a) = s(a) + b(a), ahol s(a) = 32

27a neve skálázott méret, b(a) pedig a bónusz. (Most
nincs alapsúly.) A bónusz az alábbiakban van megadva.

b(a) =

8>>>>>>>>><>>>>>>>>>:

0 ha a � 1=6
32
27a�

5
27 ha 1=6 < a � 1=5

�28
27a+

7
27 ha 1=5 < a � 1=4

�28
27a+

10
27 ha 1=4 < a � 3=10

32
27a�

8
27 ha 3=10 < a � 1=3

1
9 ha 1=3 < a � 1=2

A bónusz szakadási helyei 1=6, 1=4, és 1=3, monoton növekv½o az (1=6; 1=5) valamint (3=10; 1=3)
intervallumokban, viszont monoton csökken½o az (1=5; 1=4] illetve (1=4; 3=10] intervallumon, ami
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szokatlan. Viszont a súlyfüggvény ennek ellenére monoton növekv½o marad az egész 0 < a � 1=2
intervallumon, más szóval a bónuszfüggvény nemnegatív érték½u. Alább láthatjuk a súlyfüggvényt
és a bónuszt.

0.0 0.2 0.4
0.0
0.2
0.4
0.6

a

w(a)

0.0 0.2 0.4
0.00

0.05

0.10

a

b(a)

A bizonyítás lépései:

1. El½oször megmutatjuk hogy valamely optimális láda súlya legfeljebb w(B) � 8=3�8=27 = 64
27 .

Ezután megmutatjuk hogy az FF ládák súlya legalább 1, legfeljebb kevés kivétellel.

2. A 9-ládák súlya 1.

3. Ha a ládában van 1=2-nél nagyobb méret½u tárgy (amely lehet �-tárgy vagy 
1-tárgy), akkor
a láda súlya legalább 1.

4. Ha a láda szintje legalább 6
7 , akkor a súlya legalább 1. Legfeljebb egy 6

+-ládának (vagyis
legalább 6 tárgyat tartalmazó ládának) van 6=7 alatti szintje.

Maradtak a 2-ládák, 3-ládák, 4-ládák és 5-ládák (vagyis ahol 2; :::; 5 tárgy van).

5. Legfeljebb négy láda kivételével, ha a láda tartalmaz 
2-tárgyat, és a ládában a tárgyak
száma 2 és 5 közötti, a láda súlya legalább 1.

Ezután egy kulcs észrevétel következik:

9. Állítás: Legyen a1,..., ai valahány �-típusú tárgy ( 2 � i � 5), amelyekre a1 � ::: � ai � 1=2
és 1 � a1 + :::+ ai > 1� a1 teljesül, ekkor a tárgyak együttes súlya legalább 1.

6. Ennek segítségével sikerül bizonyítani, hogy a �-tárgyat tartalmazó 2-ládák, 3-ládák, 4-ládák
és 5-ládák súlya legalább annyi mint az ilyen ládák száma minusz 1: Az ilyen ládákat sorba tesszük,
legyen Bi és Bj két egymás utáni láda, a bennük lev½o legkisebb tárgyak pedig i1 és j1. Ekkor annak
a halmaznak, amely a j1 tárgyat tartalmazza, valamint Bi tárgyait is kivéve azonban az i1 tárgyat,
a súlya legalább 1. Amit kaptunk, az az hogy FF (L) � 7 � W � (64=27)OPT (L), vagyis az
aszimptotikus approximációs arány k = 9 esetén legfeljebb 64=27.

5.1.4 a k � 10 eset

Ez az eset a dolgozat Appendix CCBP részében van. Némileg egyszer½ubb eset mint a k = 9 esete,
azonban 10 � k � 20 esetén különböz½o súlyfüggvényre van szükségünk. A súlyozás a következ½o:
Az �-tárgyak súlya marad 1

k .

a eset. Tekintsük azokat az OPT ládákat, ahol legfeljebb kett½o további tárgy van (és ezeken
kívül csak �-tárgyak). Ezek a ládák megint a 
-ládák, a bennük lev½o további tárgyak a 
-tárgyak.
Amelyek mérete nagyobb mint 1=2, ezek a 
1-tárgyak, súlyuk 1. A többi 
-tárgy neve 
2-tárgy.
Ezeknek súlya 10 � k � 19 esetén 7

10 �
1
k , egyébként (vagyis ha k � 20), akkor

13
20 = 0:65.

b eset. Tekintsük a többi OPT ládát (aholis legalább három további tárgy van). Ezekben legfeljebb
k � 3 darab �-tárgy van, a láda neve �-láda, az ilyen ládákban lev½o további tárgyak neve �-tárgy.
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A �-tárgyak súlya a következ½o: Ha nagyobb a mérete mint fél, akkor a tárgy súlya 1. Egyébként a
�-tárgy súlya w(a) = s(a) + b(a) alakú, ahol s(a) = 6

5a a skálázott méret, b(a) pedig a bónusz. Ha
k � 20, akkor FF klasszikus súlyfüggvénye (lásd: [34]) megfelel½o, ekkor a bónusz a következ½o

b(a) =

8><>:
0 ha a � 1=6;
0:6a� 0:1 ha 1=6 < a � 1=3;
0:1 ha 1=3 < a � 1=2;

ez ugyanaz amit korábban láttunk. Viszont 10 � k � 19 esetében muszáj bizonyos módosításokat
alkalmaznunk. Érdekes módon, a súlyfüggvény ugyanaz marad mint az el½obbi ha a tárgy mérete
legfeljebb 1=5, vagy legalább 3=10. Viszont e két szám között a bónusz (és emiatt a súly) gra�konja
"szétnyílik".

b(a) =

8>>>>>>>>><>>>>>>>>>:

0 ha a � 1=6
0:6a� 0:1 ha 1=6 < a � 1=5
(1:6� 20

k )a� 0:3 +
4
k ha 1=5 < a � 1=4

(1:6� 20
k )a� 0:4 +

6
k ha 1=4 < a � 3=10

0:6a� 0:1 ha 3=10 < a � 1=3
0:1 ha 1=3 < a � 1=2

Alább szemléltetés kedvéért bemutatjuk a súlyfüggvény gra�konját k = 10, k = 13 és k = 16
esetén:
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majd a és a bónusz gra�konját k = 10, k = 13 és k = 16 esetén.

0.0 0.2 0.4
0.0

0.1

a

b(a)

0.0 0.2 0.4
0.0

0.1

a

b(a)

0.0 0.2 0.4
0.0

0.1

a

b(a)

Látható, hogy a gra�konokban középen a "rés" k = 10 esetén a legnagyobb, fokozatosan
összezáródik, majd k = 20 esetén és ett½ol kezdve elt½unik. A bizonyítás a k = 9 eset mintájára
megy. Ebben az esetben a fels½o korlátunk így alakul: Az FF algoritmus aszimptotikus approximá-
ciós aránya k � 10 esetén legfeljebb 2:7� 3=k.
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5.2 Az éles alsó korlát

A bizonyítás k = 2; 3; 4 esetén viszonylag egyszer½u.

Amikor 5 � k � 10, a bizonyítás (vagyis a konstrukció) nehézségét az adja, hogy háromfajta
optimális ládát kell alkalmazni. Egyik típusú optimális ládában 1

2 + �,
1
2 � 10�, és k � 2 további �

méret½u tárgy van, ahol 0 < " < 1
120 és � <

"
3`+4

, ` pedig egy (nagy) szám amely osztható k-val. A
másik típusban a következ½o méret½u tárgyak vannak: 12 + �,

1
4 +20�,

1
4 � 30�, és k� 3 további tárgy

� mérettel. Utoljára a harmadik típusú ládákban, ezek között is a p-edikben a következ½o tárgyak
vannak: 12 + �,

1
4 +

"
3p és

1
4 �

"
3p � 10�, valamint k � 3 további tárgy � mérettel. Ezeket megfelel½o

sorrendben adva az éles alsó korlát adódik.

A k � 10 esetben alkalmazhatjuk az elemszámkorlátozás nélküli FF algoritmus konstrukcióját,
amelyet megadtunk két fejezettel korábban. Egy kicsit csökkentjük az 12+"méret½u tárgyak méretét,
legyen a konstrukcióban lev½o ezen tárgyak mérete csak 1

2 + "=2. Ekkor minden optimális ládában
három tárgy van, és maradt még pontosan "=2 szabad hely. Ide beteszünk k�3 darab apró tárgyat,
egyenként "

2k mérettel. A kicsi tárgyak jönnek majd a lista elején, és így a korábbi 1:7 arány helyett
ez k�3

k -val növekszik, és így a megnövelt 1:7 +
k�3
k = 2:7� 3

k arányt kapjuk.

6 Kötegelt ládapakolás és Gráf-láda pakolás

Ebben a fejezetben a Kötegelt ládapakolási feladattal foglalkozunk (Batched Bin Packing, BBP ),
a fejezet eredményei Dósa [15] dolgozatából származnak. A feladat a következ½o: K egymás utáni
kötegben (batch) érkeznek a tárgyak, egy-egy köteg tárgyai egyszerre érkeznek, és a következ½o
köteg érkezése el½ott ezeket mind el kell pakolni, ráadásul úgy, hogy nem tudunk semmit a kés½obbi
kötegekr½ol. A modellt Gutin és társai [30] cikke de�niálta. K = 1 esetén ez éppen az o­ ine
pakolási feladat. Ha pedig minden köteg pontosan egy tárgyat tartalmaz, akkor meg az online
ládapakolási feladattal állunk szemben (azzal az egyetlen különbséggel, hogy a kötegek száma el½ore
adott). Ezáltal a BBP feladat valamiképpen az o­ ine ládapakolási feladatnak is és az online
feladatnak is általánosítása. Csak K = 2 esetével foglalkozunk. Ezen belül két változattal: az
egyik változatban azokat a ládákat ahova az els½o köteg tárgyait pakoltuk, nem szabad használni
a másik köteg tárgyainak pakolására. Ennek a változatnak a neve: diszjunktív modell, ez egy
újonnan de�niált modell, Dósa [15] cikkében szerepel el½oször. A másik változat neve (ahol szabad az
el½obb említett ládákat használni) kiegészít½o (augmenting) modell, ezt a modellt de�niálta Gutinék
cikke. Megjegyezzük, hogy az optimális pakolás esetén megengedett különböz½o kötegbeli tárgyak
összepakolása, mindkét változatban!

A [30] cikk K = 2 esetében megmutatja hogy Ras(A) � r � 1:3871 alsó korlát bármely A
algoritmus aszimptotikus approximációs arányára, ahol r az r=(r � 1)� 3 = ln r=(2r � 2) egyenlet
megoldása.

A feladatot a másik oldalról közelítjük meg, megadjuk a BBP feladatra K = 2 esetére az els½o
approximációs algoritmust. Ennek éles aszimptotikus approximációs aránya 19=12 � 1:5833. Gutin
és társai el½obbi cikkén kívül Dósa [15] cikkéig úgy t½unik nincs más ezzel kapcsolatos publikáció.
Azóta megjelent még kett½o cikk a témával kapcsolatban: [2] és [25].

Kapcsolódó modellek. Ládapakolás kon�iktussal (bin packing with con�icts, BPC): Ez egy
másfajta általánosítása a BP feladatnak: bizonyos tárgyak "kon�iktusban" vannak, és nem pakol-
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hatók ugyanabba a ládába (lásd [31] vagy [24]). Egy ennél általánosabb változatot graph-bin packing
vagyis gráf-láda pakolási feladatként de�niáltunk (röviden GBP ) a [5] cikkünkben, ennek némileg
egyszer½usített változata a következ½o: Adott egy gráf, alsó és fels½o korlátokkal az éleken, valamint sú-
lyokkal a pontjaiban. A pontokat (amelyek tárgyaknak felelnek meg) kell minél kevesebb, egységnyi
kapacitású ládákba pakolni. Bármely ládába pakolt tárgyak összmérete - szokás szerint - legfeljebb
1. Azonban további feltételek is vannak: Nevezetesen, bármely két a és b pont esetén, ha ezek éllel
össze vannak kötve a gráfban, és az él alsó illetve fels½o korlátja l és u, akkor a és b csak olyan Bi
illetve Bj ládákba pakolható, amelyek indexeire teljesül hogy l � ji� jj � u. (Vagyis egymáshoz
se túl közel, se túl messze nem szabad ezeket pakolni.) Nyilvánvaló, hogy ez a BPC feladat ál-
talánosítása, a következ½o módon: legyen minden élen u = 1 és l 2 f0; 1g. A GBP feladat esetén
a [5] cikk (egyebek mellett) megad egy approximációs algoritmust a feladat megoldására abban a
seciális esetben amikor csak alsó korlátok vannak az éleken (vagyis bármely élre u =1), és a gráf
páros. Az algoritmus abszolút approximációs aránya 3. Meglep½o módon, a BPP feladatra adott
algoritmusunk megfelel½o alkalmazásával a GBP feladat ezen speciális esetére is kapunk egy javított
algoritmust. A javított approximációs arány: 2:5833, abszolút értelemben véve.

6.1 A BBP feladatra vonatkozó fels½o korlát

Egy approximációs algoritmust de�niálunk a BBP feladatra, K = 2 esetére. Pontosabban a
következ½ot végezzük: Az FFD algoritmust alkalmazzuk a két köteg (batch) pakolására, egymástól
függetlenül, tehát külön ládákba kerülnek a két köteg tárgyai. El½obb a B1 tárgyait pakoljuk FFD-
val, majd FFD-t alkalmazzuk a második kötegre, vagyis a B2 kötegre (a diszjunktív modellt
alkalmazzuk). Az algoritmust a következ½oképpen jelöljük: FFD(B1; B2).

10. Tétel. FFD(B1; B2) � 19
12OPT + 2, ahol a 19=12 szorzó éles, nem csökkenthet½o.

A bizonyítás alapja, hogy osztályokba csoportosítjuk a tárgyakat, majd megfelel½o súlyozást
választunk. Ami a súlyozás érdekessége, hogy a két kötegben lev½o tárgyak súlyozása nem feltétlenül
ugyanaz. Alább bemutatjuk a megfelel½o eseteket és a súlyozást ezekben az esetekben. A bizonyítás
némileg hasonló az FFD éles bizonyításához, amelyet a 2. fejezetben mutattunk be. Legyen X az
els½o köteg legkisebb tárgya, és Y a második köteg legkisebb tárgya. Ezek mérete szerint megy az
esetek szétválasztása.

1. eset, X � 1=3 és Y � 1=3. Ekkor minden FFD bin szintje legalább 2=3, kivéve esetleg az
utolsó ládákat a két kötegnél, és az állítás adódik.

2. eset, X > 1=3 és Y > 1=3. Az 1=2-nál nagyobb tárgyak súlya 1, a többi tárgy súlya 1=2, és
minden egyszer½uen adódik.

3. eset, X > 1=3 és Y � 1=3. Ez az eset viszont lényegesen nehezebb, több alesetre kell
bontani, és a két köteg súlyai nem ugyanazok. Az els½o kötegbeli tárgyak súlya továbbra is 1 illetve
1=2, aszerint hogy a méretük félnél nagyobb vagy legfeljebb fél. Az els½o kötegben minden láda súlya
legalább 1, legfeljebb 1 kivétellel. A második köteg súlyai pedig ezek lesznek:

3.1. eset, 1=4 < Y � 1=3. Ekkor, egy B2-tárgy (jelöljük v-vel a tárgyat és a méretét is) Z-
típusú, ha optimális pakoláskor v közös ládában van egy nagy (félnél nagyobb méret½u) B1-tárggyal.
A Z-tárgyak súlya 7=12. A többi v 2 B2�Z tárgy súlya w(v) = 19

12v. Ekkor minden optimális láda
súlya legfeljebb 19=12, és minden FFD(B2) láda súlya legalább 1, legfeljebb kett½o láda kivételével.

3.2. eset, 1=6 < Y � 1=4. Megadjuk a B2 tárgyak súlyait. Legyen valamely v 2 B2 tárgy
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irreguláris, ha v valamely félnél nagyobb méret½u B1 tárggyal van együtt pakolva az optimális pakolás
során. Ezeket két csoportba osztjuk. Ha v az egyedüli B2 tárgy ebben az optimális ládában, akkor
a v tárgy típusa: Z. Ellenkez½o esetben két irreguláris tárgy van ebben az optimális ládában, legyen
ezek típusa U és V , ahol az U tárgy legalább akkora mint a V tárgy. Az el½obbi három típus
súlya 7=12, 1=3, illetve 1=4. Bármely további v 2 B2� (Z [ U [ V ) tárgy reguláris B2 tárgy, ezek
súlya w(v) = 19

12v. Ezek után a bizonyítás hasonló az el½obbi esethez, azonban jóval részletesebb
vizsgálatot igényel.

3.3. eset, 1=7 < Y � 1=6. Ekkor a következ½o osztályozást vezetjük be a B2 tárgyak számára.

Osztály Súly
2=3 < J � 1 1

1=2 < I � 2=3 10=12

5=14 < H � 1=2 7=12

1=3 < G � 5=14 5=12

1=4 < F � 1=3 4=12

4=21 < E � 1=4 3=12

1=6 < D � 4=21 2:5=12

1=7 < C � 1=6 2=12

Most is minden optimális láda súlya legfeljebb 19=12, kivéve az (N;M;C) alakú ládákat (ahol
tehát egy N , egyM és egy C tárgy van). Azonban ha vannak ilyen ládák, kiderül hogy olyan FFD
ládák is lesznek ahol meg a súly lényegesen nagyobb mint 1, és ez ellensúlyozza az el½obbi ládák
hiányát. Ezután hosszadalmas esetszétválasztás megy arra nézve, hogy milyen tárgyak vannak
(illetve milyenek nincsenek) az FFD ládákban, felhasználva az FFD algoritmus alapvet½o tulajdon-
ságait.

3.4. eset, Y � 1=7. Itt minden v 2 B2 súlya w(v) = 7
6 �v, és minden viszonylag könnyen kijön.

4. eset, X � 1=3 és Y > 1=3. Ez az eset parallel a 3. esettel.
Mit mondhatunk a "kiegészít½o" és a "megkülönböztet½o" (augmenting - disjunctive) modellek

kapcsolatáról? Csak az FFD algoritmus viselkedését tanulmányoztuk ezen a téren, tehát hogy a két
modell esetén hogyan viselkedik. Az algoritmus aszimptotikus approximációs arányát Ra(FFD)
illetve Rd(FFD)-vel jelölve a két modellben, K = 2 köteg esetén a következ½o teljesül:

11. Tétel: Ra(FFD) = Rd(FFD), ha K = 2.

Vagyis az algoritmus 19=12 aránya nem javítható, ha az els½o kötegben lev½o tárgyhalmaz pakolása
után ezeket a ládákat is felhasználjuk a második kötegbeli tárgyhalmaz pakolásához.

6.2 Javított algoritmus a GBP feladatra

Az algoritmus a következ½o: Legyen a páros gráf csúcsainak két osztálya A és B.

1. El½obb pakoljuk az A-ban lev½o pontokat (tárgyakat) az FFD algoritmussal ládákba. Ezután
pakoljuk a B csúcshalmaz csúcsait is ládákba, megint az FFD algoritmussal, de az el½obbiek-
t½ol különböz½o ládákba, az el½obbi pakolástól függetlenül. Vagyis ebben a lépésben az élekre
vonatkozó alsó korlátokat �gyelmen kívül hagyjuk.
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2. Hagyjunk d� 1 üres ládát a két ládahalmaz között, ahol d az élekre vonatkozó alsó korlátok
maximuma.

Ekkor teljesül:

12. Tétel: Az algoritmus abszolút approximációs aránya 19=12 + 1 = 31=12.

7 A tézisek összefoglalása

Ebben a fejezetben összefoglaljuk az el½obbi öt tézisben szerepl½o eredményeket.

7.1 Els½o tézis

Meghatároztuk az FFD algoritmus pontos abszolút approximációs arányát. Pontosabban ennél
többet bizonyítottunk: Tetsz½oleges m egész esetén megadtuk azt a lehet½o legnagyobb k számot,
amelyekre van olyan L input, hogy OPT (L) = m és FFD(L) = k. A pontos állítás a következ½o
tételben fogalmazható meg:

1. Tétel. Legyen L tetsz½oleges input, valamint legyen OPT (L) = 9n + i, ahol n egész és
2 � i � 10. Ekkor

FFD(L) �
�
11n+ i+ 1; 2 � i � 5;
11n+ i+ 2; 6 � i � 10;

vagy ekvivalens módon:
FFD(L) � b11=9 �OPT (L) + 6=9c: (3)

és a korlát minden n és i értékre éles, vagyis tetsz½oleges n és i esetén van olyan L input amelyre
az egyenl½otlenség egyenl½oséggel teljesül.

Hangsúlyozzuk hogy az el½obbi táblázatnak korábban csak egy-két értéke volt ismert, ezáltal az
körülbelül 40 év óta megoldatlan kérdést válaszoltunk meg.

7.2 Második tézis

A kérdés felvetése után 40 évvel, megmutattuk hogy az FF algoritmus abszolút approximációs
aránya pontosan 1:7. Más szóval, ha az optimális pakoláshoz OPT számú ládára van szükség,
akkor FF legfeljebb b1:7 � OPT c ládát használ fel. Ennél több is igaz, az el½oz½o fejezethez hasonló
módon, most is sikerül tetsz½oleges OPT értékre megadni, hogy legfeljebb hány ládát használ FF ,
hiszen megadunk olyan inputokat, amelyekre az FF által felhasznált ládák száma pontosan b1:7 �
OPT c. Korábban csak néhány kisebb OPT értékre volt ismert FF -nek pontos fels½o becslése.
Eredményünket a következ½o tétel fejezi ki pontosan:

2. Tétel. Legyen L tetsz½oleges input, ekkor

FF (L) � b1:7 �OPT c;

és tetsz½oleges OPT értékre van olyan L input, amikor a fenti egyenl½otlenségben egyenl½oség szerepel,
vagyis a becslés minden OPT esetén éles.

A tétel bizonyításához egyrészt a korábban használt súlyfüggvény technika újfajta kezelésére (a
súlyfüggvény felbontására két részre) volt szükség, továbbá újfajta alsó korlát konstrukcióra.
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7.3 Harmadik tézis

A harmadik tézispontban a paraméteres esettel foglalkozunk, vagyis amikor a tárgyak mérete kicsi:
pi � 1=d, ahol d � 1 valamely rögzített pozitív egész paraméter. Megadtuk az FF algoritmus éles
abszolút approximációs arányát. Valójában itt is többr½ol van szó: Tetsz½oleges OPT optimumérték
esetén megállapítjuk hogy FF értéke legfeljebb mekkora lehet, erre pontos becslést adunk. Legyen
d > 1 és OPT � 1 tetsz½oleges pozitív egész számok. Írjuk fel az OPT számot az OPT = k � d+ r
alakban, ahol k és r egész, valamint 1 � r � d. Ekkor a következ½o állítások érvényesek:

6. Tétel. (i), OPT = k � d+ 1 esetén az FF ládák maximális száma

FFd �
�
d+ 1

d
OPT

�
= OPT + k,

(ii), OPT = k � d+ r esetén ahol 2 � r � d, az FF ládák maximális száma

FFd �
�
d+ 1

d
OPT

�
= OPT + k + 1.

Ezáltal szintén egy körülbelül 40 éve megoldatlan feladatot oldottunk meg.

7.4 Negyedik tézis

A kezdeti eredmények után körülbelül negyven évvel, meghatároztuk az FF algoritmus aszimp-
totikus approximációs arányának pontos értékét tetsz½oleges k � 3 értékére. Korábban csak k = 2
esetén volt ismert a pontos arány. A pontos állítás a következ½o tételben szerepel:

7. Tétel. Az FF algoritmus aszimptotikus approximációs aránya a következ½o:
(i) Ras(FF ) = 2:5� 2

k , ha k = 2; 3; 4,
(ii) Ras(FF ) = 8

3 �
8
3k , ha 4 � k � 10,

(iii) Ras(FF ) = 2:7� 3
k , ha k � 10.

7.5 Ötödik tézis

Ebben a tézispontban a kötegelt ládapakolási feladattal foglalkozunk (Batched Bin Packing, BBP ).
Ez azt jelenti, hogy K egymás utáni kötegben (batch) érkeznek a tárgyak, egy-egy köteg tárgyai
egyszerre érkeznek, és a következ½o köteg érkezése el½ott ezeket mind el kell pakolni, ráadásul úgy,
hogy nem tudunk semmit a kés½obbi kötegekr½ol. Csak K = 2 esetével foglalkozunk. Megadtuk
a feladatra az els½o approximációs algoritmust. Ennek éles aszimptotikus approximációs aránya
19=12 � 1:5833. Az algoritmust a következ½oképpen jelöljük: FFD(B1; B2).Az állítás pontos meg-
fogalmazása a következ½o:

10. Tétel. FFD(B1; B2) � 19
12OPT + 2, ahol a 19=12 szorzó éles, nem csökkenthet½o.

Továbbá foglalkoztunk még ebben a tézispontban a graph-bin packing (GBP ) vagyis gráf-láda
pakolási feladattal. Ennek némileg egyszer½usített változata a következ½o: Adott egy gráf, alsó és fels½o
korlátokkal az éleken, valamint súlyokkal a pontjaiban. A pontokat (amelyek tárgyaknak felelnek
meg) kell minél kevesebb, egységnyi kapacitású ládákba pakolni. Bármely ládába pakolt tárgyak
összmérete - szokás szerint - legfeljebb 1. Azonban további feltételek is vannak: Nevezetesen,
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bármely két a és b pont esetén, ha ezek éllel össze vannak kötve a gráfban, és az él alsó illetve fels½o
korlátja l és u, akkor a és b csak olyan Bi illetve Bj ládákba pakolható, amelyek indexeire teljesül
hogy l � ji� jj � u. (Vagyis egymáshoz se túl közel, se túl messze nem szabad ezeket pakolni.)
Meglep½o módon, a BPP feladatra adott algoritmusunk megfelel½o alkalmazásával a GBP feladat
ezen speciális esetére is kapunk egy javított algoritmust. Az algoritmus abszolút approximációs
aránya 2:5833, ami a jelenlegi legjobb eredmény erre a feladatra.
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